99 research outputs found
Biological effects on serpentinite weathering
Serpentinites, perhaps more than any other rock type, control the composition and evolution of the development of the surrounding ecosystems. The bulk chemistry of serpentinite rocks, high in Mg and trace elements, and low in nutrients such as Ca, K, P, and N, causes an extreme and stressful environment for ecosystems. However, the role that those serpentine ecosystems play in development of serpentine soils has not been examined.
Due to the unusual chemistry of serpentine soils, serpentine ecosystems have deeper and better-developed root systems than other ecosystems. The rhizosphere of serpentine systems, documented to produce abundant organic acids and siderophores, is also likely to impact serpentine soils. In order to test the effects of biological impacts on serpentine soil formation, soil pore waters were analyzed for organic acids. Furthermore, Fe-oxidizing bacteria have been detected using Biological Activity Reaction Tests (BARTs) and such bacteria were investigated by enrichment cultures. In addition to directly measuring the biological factors including organic acids, siderophores, and Fe-oxidizing bacteria, the impact of such weathering on soils and rock was examined using XRF, XRD, and SEM
Connecting Aerial Gamma Ray Surveys and Geochemical Data
Radiation in the Environment Aerial Gamma Ray Surveys Radiation and Geology Collecting Existing Geochemical Data Rock Unit Geochemistry Model Creation and Compariso
Serpentinite weathering and implications for Mars
In the search for life on Mars near-surface soil environments may be important habitats for life accessible to future missions. Serpentinite rocks have been documented on Mars, as well as other clay minerals including smectite and kaolinites. Previous studies of soils formed on serpentinites on Earth have documented the formation of extensive clays. Serpentinites are additionally of interest as habitats for life such as methanogens. Here we examine weathering of serpentinites from bedrock to soil surface, as a potential route for the formation of clay minerals on Mars from abundant ultramafic minerals. We additionally test for the presence of Fe-oxidizing bacteria in weathered serpentinite rocks. Fe-oxidizing bacteria have been previously demonstrated to affect dissolution rates of ultramafic minerals, and may produce important biosignatures
Investigating Weathering of Basaltic Materials in Gale Crater, Mars: A Combined Laboratory, Modeling and Terrestrial Field Approach
Recent observations from Gale Crater, Mars document past aqueous alteration both in the formation of the Stimson sandstone unit, as well as in the formation of altered fractures within that unit. Geochemical and mineralogical data from Curiosity also suggest Fe-rich amorphous weathering products are present in most samples measured to date. Here we interpret conditions of possible past weathering in Gale Crater using a combination of field, laboratory, and modeling work. In order to better understand secondary Fe-rich phases on Mars, we are examining formation of weathering products in high Fe and Mg and low Al serpentine soils in the Klamath Mountains, CA. We have isolated potential weathering products from these soils, and are analyzing them using synchrotron XRF and XRD as well as FullPat for a direct comparison to analyses from Gale Crater. In order to interpret the implications of the persistence of potential secondary Fe-containing phases on Mars, we are also measuring the dissolution rates of the secondary weathering products allophane, Fe-rich allophane, and hisingerite. Ongoing dissolution experiments of these materials suggest that they dissolve significantly more rapidly than more crystalline secondary minerals with similar chemical compositions. Finally, to quantify the specific conditions of past aqueous alteration in Gale Crater we are performing reactive transport modeling of a range of possible past environmental conditions. Specifically, we are testing the conditions under which a Stimson unit-like material forms from a parent material similar to Rocknest or Bagnold eolian deposits, and the conditions under which observed altered fracture zones form from a Stimson unit-like parent material. Our modeling results indicate that the formation of the Stimson unit is consistent with leaching of an eolian deposit with a solution of pH = 6-8, and that formation of the altered fracture zones is consistent with leaching with a very acidic (pH = 2-3) high sulfate solution containing Ca. These results suggest circumneutral pH conditions during authigenesis or early diagenesis in the Stimson formation sediments followed by diagenetic alteration by very acidic solutions along fracture zones
- …