24 research outputs found

    In vivo utjecaj imunosupresije u majki za vrijeme trudnoće na imunosni sustav novorođenčadi

    Get PDF
    When used in pregnancy, immunosuppressants can cross the placental barrier and enter foetal circulation, possibly affecting the immune system of the foetus. This study evaluated the immune function in eight children born by mothers with connective tissue diseases who received immunosuppressants (cyclosporine A or dexamethasone) during pregnancy and in six babies from mothers with similar diseases, but who did not receive any treatment. Judging by the cytokine production of interleukin-2 and interferon-γ in peripheral blood mononuclear cells stimulated by phorbol-myristate-acetate (PMA) and ionomycin, immunosuppressive drugs given for rheumatic disorders during pregnancy do not induce significant immunosuppression in babies.Imunosupresivni lijekovi davani za vrijeme trudnoće mogu proći placentalnu barijeru i ući u cirkulaciju fetusa, s mogućim utjecajem na njegov imunosni sustav. U radu je praćena imunosna funkcija kod osmero djece rođene od majki s bolestima vezivnog tkiva, koje su tretirane za vrijeme trudnoće imunosupresivnim lijekovima (ciklosporin A ili deksametazon) i kod osmero novorođenč adi rođene od majki sa sličnim bolestima, ali koje nisu bile tretirane. Imunosupresivni lijekovi primijenjeni za vrijeme trudnoće kod majki koje boluju od reumatskih bolesti ne izazivaju značajniju imunosupresiju u novorođenčadi praćenu nastajanjem citokina, interleukina 2 i interferona γ_ u perifernim mononuklearnim krvnim stanicama pod djelovanjem forbol-miristat-acetata (PMA) i ionomicina

    Positive effect of Mesenchymal Stem Cells therapeutic administration on chronic Experimental Autoimmune Encephalomyelitis

    Get PDF
    Multiple Sclerosis (MS) is a crippling chronic disease of the Central Nervous System caused by the presence of self-antibodies which progressively damage axonal myelin sheath, leading to axonal transmission impairment and to the development of neurological symptoms. MS is characterized by a Relapsing-Remitting course, and current therapies rely only on the use of immunosuppressive drugs, which are however unable to reverse disease progression. Encouraging results have been obtained in preclinical studies with the administration of Mesenchymal Stem Cells (MSCs) before disease onset (Zappia et al., 2005). Here, we investigate the therapeutic potential of MSC administration after disease onset into an animal model of MS, represented by Dark Agouti rats affected by chronic Relapsing-Remitting Experimental Autoimmune Encephalomyelitis (EAE) (Cavaletti et al., 2004). 106 MSC were intravenously injected in EAE rats after disease onset. Clinical score was assessed daily, and after 45 days rats were sacrificed and histological analysis of spinal cords performed to evaluate the demyelinating lesions. After the first peak of disease, no further relapses were observed in EAE rats treated with MSCs, differently from what observed in EAE group. Histological analysis demonstrated the presence of demyelinated plaques in spinal cords of EAE rats, (Luxol fast Blue staining and anti-MBP immunohystochemistry). On the contrary the therapeutic schedule with MSCs significantly reduces the number and the extension of demyelinated areas in the spinal cords, confirming clinical score evaluations. These results demonstrated that MSCs ameliorate the clinical course of EAE and hamper the disease relapsing by reducing the areas of demyelinated lesions. Granted by MIUR – FIRB Futuro in Ricerca 2008 Prot. N° RBFR08VSVI_001

    Oxaliplatin-induced peripheral neurotoxicity: morphological characterization in different mouse strains

    Get PDF
    Oxaliplatin is one of the most effective anticancer drug, particularly employed in the treatment of colorectal cancer, but one of the major limitation in its use is peripheral neurotoxicity. Oxaliplatin induced peripheral neurotoxicity (OIPN) has a high incidence and is frequently long lasting or permanent. Neuropathy is characterized by distal sensory impairment initially in the legs, then extending to the arms. A prominent manifestation of sensitive damage is ataxia. Besides chronic neurotoxicity, many patients experience an acute, rapidly developing cold-induced sensory neuropathy, usually resolving within one week. OIPN clinical manifestations reflect the involvement of dorsal root ganglia (DRG) as primary target of the drug toxicity. Although this assumption is largely accepted and some pathogenetic hypothesis have been proposed, mechanisms at the basis of OIPN need to be clearly defined. OIPN may vary in frequency and severity among different cancer patients despite equal treatment schedules. A genetic susceptibility for more severe oxaliplatin-induced peripheral neurotoxicity (OIPN) has been suggested but never confirmed. Therefore we designed a study to assess the phenotypic differences induced by oxaliplatin treatment in six different mice strains (Balb c, AJ, C57Bl6, FVB, DBA, CD1) aiming at identifying the more and less severely affected. Animals were treated with OHP 3.5 mg/Kg/iv twice weekly x 4 weeks and evaluated before and after treatment. In all strains we performed a multimodal characterization of its neurotoxicity through morphological and morphometrical assessment in caudal nerve and DRG at light and electron microscopy, intra-epidermal nerve fibers density quantification, evaluation of mechanical and cold allodynia/hypoaesteshesia, caudal and digital nerve conduction velocity, activity of wide dynamic range (WDR) neurons of the spinal dorsal horn. Our preliminary data suggest that all the strains show signs of OIPN but not the same modifications in the parameters examined. We will show these results with particular attention to morphological data. This study suggests that genetic variability might have a role in the type and severity of OHP-induced peripheral damage

    Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study

    Get PDF
    Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age.Methods: From the Italian LIPIGEN cohort, we selected 1188 (>= 18 years) and 708 (<18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation.Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives.Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age

    Updating approach for lexicographic optimization-based planning to improve cervical cancer plan quality

    No full text
    Abstract Background To investigate the capability of a not-yet commercially available fully automated lexicographic optimization (LO) planning algorithm, called mCycle (Elekta AB, Stockholm, Sweden), to further improve the plan quality of an already-validated Wish List (WL) pushing on the organs-at-risk (OAR) sparing without compromising target coverage and plan delivery accuracy. Material and Methods Twenty-four mono-institutional consecutive cervical cancer Volumetric-Modulated Arc Therapy (VMAT) plans delivered between November 2019 and April 2022 (50 Gy/25 fractions) have been retrospectively selected. In mCycle the LO planning algorithm was combined with the a-priori multi-criterial optimization (MCO). Two versions of WL have been defined to reproduce manual plans (WL01), and to improve the OAR sparing without affecting minimum target coverage and plan delivery accuracy (WL02). Robust WLs have been tuned using a subset of 4 randomly selected patients. The remaining plans have been automatically re-planned by using the designed WLs. Manual plans (MP) and mCycle plans (mCP01 and mCP02) were compared in terms of dose distributions, complexity, delivery accuracy, and clinical acceptability. Two senior physicians independently performed a blind clinical evaluation, ranking the three competing plans. Furthermore, a previous defined global quality index has been used to gather into a single score the plan quality evaluation. Results The WL tweaking requests 5 and 3 working days for the WL01 and the WL02, respectively. The re-planning took in both cases 3 working days. mCP01 best performed in terms of target coverage (PTV V95% (%): MP 98.0 [95.6–99.3], mCP01 99.2 [89.7–99.9], mCP02 96.9 [89.4–99.5]), while mCP02 showed a large OAR sparing improvement, especially in the rectum parameters (e.g., Rectum D50% (Gy): MP 41.7 [30.2–47.0], mCP01 40.3 [31.4–45.8], mCP02 32.6 [26.9–42.6]). An increase in plan complexity has been registered in mCPs without affecting plan delivery accuracy. In the blind comparisons, all automated plans were considered clinically acceptable, and mCPs were preferred over MP in 90% of cases. Globally, automated plans registered a plan quality score at least comparable to MP. Conclusions This study showed the flexibility of the Lexicographic approach in creating more demanding Wish Lists able to potentially minimize toxicities in RT plans

    Paclitaxel, but Not Cisplatin, Affects Satellite Glial Cells in Dorsal Root Ganglia of Rats with Chemotherapy-Induced Peripheral Neurotoxicity

    No full text
    Chemotherapy-induced peripheral neurotoxicity is one of the most common dose-limiting toxicities of several widely used anticancer drugs such as platinum derivatives (cisplatin) and taxanes (paclitaxel). Several molecular mechanisms related to the onset of neurotoxicity have already been proposed, most of them having the sensory neurons of the dorsal root ganglia (DRG) and the peripheral nerve fibers as principal targets. In this study we explore chemotherapy-induced peripheral neurotoxicity beyond the neuronocentric view, investigating the changes induced by paclitaxel (PTX) and cisplatin (CDDP) on satellite glial cells (SGC) in the DRG and their crosstalk. Rats were chronically treated with PTX (10 mg/Kg, 1qwx4) or CDDP (2 mg/Kg 2qwx4) or respective vehicles. Morpho-functional analyses were performed to verify the features of drug-induced peripheral neurotoxicity. Qualitative and quantitative immunohistochemistry, 3D immunofluorescence, immunoblotting, and transmission electron microscopy analyses were also performed to detect alterations in SGCs and their interconnections. We demonstrated that PTX, but not CDDP, produces a strong activation of SGCs in the DRG, by altering their interconnections and their physical contact with sensory neurons. SGCs may act as principal actors in PTX-induced peripheral neurotoxicity, paving the way for the identification of new druggable targets for the treatment and prevention of chemotherapy-induced peripheral neurotoxicity

    Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of Paclitaxel-Induced Peripheral Neurotoxicity

    No full text
    The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors’ quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation

    Sodium-Calcium Exchanger 2: A Pivotal Role in Oxaliplatin Induced Peripheral Neurotoxicity and Axonal Damage?

    No full text
    Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a frequent adverse event of colorectal cancer treatment. OIPN encompasses a chronic and an acute syndrome. The latter consists of transient axonal hyperexcitability, due to unbalance in Na+ voltage-operated channels (Na+VOC). This leads to sustained depolarisation which can activate the reverse mode of the Na+/Ca2+ exchanger 2 (NCX2), resulting in toxic Ca2+ accumulation and axonal damage (ADa). We explored the role of NCX2 in in vitro and in vivo settings. Embryonic rat Dorsal Root Ganglia (DRG) organotypic cultures treated with SEA0400 (SEA), a NCX inhibitor, were used to assess neuroprotection in a proof-of-concept and pilot study to exploit NCX modulation to prevent ADa. In vivo, OHP treated mice (7 mg/Kg, i.v., once a week for 8 weeks) were compared with a vehicle-treated group (n = 12 each). Neurophysiological and behavioural testing were performed to characterise acute and chronic OIPN, and morphological analyses were performed to detect ADa. Immunohistochemistry, immunofluorescence, and western blotting (WB) analyses were also performed to demonstrate changes in NCX2 immunoreactivity and protein expression. In vitro, NCX inhibition was matched by ADa mitigation. In the in vivo part, after verifyingboth acute and chronic OIPN had ensued, we confirmed via immunohistochemistry, immunofluorescence, and WB that a significant NCX2 alteration had ensued in the OHP group. Our data suggest NCX2 involvement in ADa development, paving the way to a new line of research to prevent OIPN

    High-dose intravenous immunoglobulins reduce nerve macrophage infiltration and the severity of bortezomib-induced peripheral neurotoxicity in rats

    No full text
    Background: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe adverse effect in patients receiving antitumor agents, and no effective treatment is available. Although the mechanisms responsible for the development of CIPN are poorly understood, recent findings make neuroinflammation an attractive target to be investigated, particularly when neuropathic pain is a prominent feature such as after bortezomib administration. The aim of our study was to evaluate the effect of intravenous immunoglobulins (IVIg) delivery in chronic CIPN. The related neuro-immune aspects were investigated in a well-characterized rat model of bortezomib-induced peripheral neurotoxicity (BIPN). Methods: After determination of a suitable schedule based on a preliminary pharmacokinetic pilot study, female Wistar rats were treated with IVIg 1g/kg every 2weeks. IVIg treatment was started at the beginning of bortezomib administration ("preventive" schedule), or once BIPN was already ensued after 4weeks of treatment ("therapeutic" schedule). Neurophysiological and behavioral studies were performed to assess the extent of painful peripheral neurotoxicity induced by bortezomib, and these functional assessments were completed by pathologic examination of peripheral nerves and intraepidermal nerve fiber quantification (IENF). The role of the innate immune response in BIPN was investigated by immunochemistry characterization of macrophage infiltration in peripheral nerves. Results: Both schedules of IVIg administration were able to significantly reduce bortezomib-induced heat and mechanical allodynia. Although these changes were not evidenced at the neurophysiological examination of peripheral nerves, they behavioral effects were paralleled in the animals treated with the preventive schedule by reduced axonopathy in peripheral nerves and significant protection from loss of IENF. Moreover, IVIg administration was very effective in reducing infiltration in peripheral nerves of macrophages with the M1, pro-inflammatory phenotype. Conclusion: Our results suggest a prominent role of neuroinflammation in BIPN and that IVIg might be considered as a possible safe and effective therapeutic option preventing M1 macrophage infiltration. However, since neuropathic pain is frequent also in other CIPN types, it also indicates the need for further investigation in other forms of CIPN
    corecore