4 research outputs found

    Heat capacity in nonequilibrium steady states

    Full text link
    We show how to extend the concept of heat capacity to nonequilibrium systems. The main idea is to consider the excess heat released by an already dissipative system when slowly changing the environment temperature. We take the framework of Markov jump processes to embed the specific physics of small driven systems and we demonstrate that heat capacities can be consistently defined in the quasistatic limit. Away from thermal equilibrium, an additional term appears to the usual energy-temperature response at constant volume, explicitly in terms of the excess work. In linear order around an equilibrium dynamics that extra term is an energy-driving response and it is entirely determined from local detailed balance. Examples illustrate how the steady heat capacity can become negative when far from equilibrium.Comment: 15 pages, 2 figure

    Entropy and efficiency of a molecular motor model

    Full text link
    In this paper we investigate the use of path-integral formalism and the concepts of entropy and traffic in the context of molecular motors. We show that together with time-reversal symmetry breaking arguments one can find bounds on efficiencies of such motors. To clarify this techinque we use it on one specific model to find both the thermodynamic and the Stokes efficiencies, although the arguments themselves are more general and can be used on a wide class of models. We also show that by considering the molecular motor as a ratchet, one can find additional bounds on the thermodynamic efficiency

    Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics

    Full text link
    We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle
    corecore