23 research outputs found
Land use and traffic generation in urban areas, with particular reference to Perth
This thesis owes its origin to many sources. The introduction to traffic studies began with a two week visit to the Road Research Laboratory, and advice continued over the following three years. It was made financially possible with a D.S.I.R. Research Studentship, and through the Department of Geography, University of Durham, and the Burgh of Perth. The willing help of the Burgh Surveyor's Department of Perth, and later the Scottish Development Department, ensured the successful completion of the field work. The list of helpful people and organisations is too long to itemise individually. However mention must be made of the Burgh Surveyor of Perth and his staff, numerous citizens and firms in Perth, and Perth local press, the Scottish Development Department, and the Joint Urban Planning Group. In Durham constant help was available from my supervisor, Professor W.B. Fisher, from Mrs. E. Templeton and Dr. Horgood of the Computer Unit, and from Dr. E. Sunderland. In Vancouver, financial help was available from the Department of Geography, Simon Eraser University in the final preparation of the thesis. Finally, and not least, thanks must go to my wife, who has given me constant encouragement and advice
Building a Quantum Engineering Undergraduate Program
Contribution: A roadmap is provided for building a quantum engineering education program to satisfy U.S. national and international workforce needs.
Background: The rapidly growing quantum information science and engineering (QISE) industry will require both quantum-aware and quantum-proficient engineers at the bachelor\u27s level.
Research Question: What is the best way to provide a flexible framework that can be tailored for the full academic ecosystem?
Methodology: A workshop of 480 QISE researchers from across academia, government, industry, and national laboratories was convened to draw on best practices; representative authors developed this roadmap.
Findings: 1) For quantum-aware engineers, design of a first quantum engineering course, accessible to all STEM students, is described; 2) for the education and training of quantum-proficient engineers, both a quantum engineering minor accessible to all STEM majors, and a quantum track directly integrated into individual engineering majors are detailed, requiring only three to four newly developed courses complementing existing STEM classes; 3) a conceptual QISE course for implementation at any postsecondary institution, including community colleges and military schools, is delineated; 4) QISE presents extraordinary opportunities to work toward rectifying issues of inclusivity and equity that continue to be pervasive within engineering. A plan to do so is presented, as well as how quantum engineering education offers an excellent set of education research opportunities; and 5) a hands-on training plan on quantum hardware is outlined, a key component of any quantum engineering program, with a variety of technologies, including optics, atoms and ions, cryogenic and solid-state technologies, nanofabrication, and control and readout electronics
Building a Quantum Engineering Undergraduate Program
The rapidly growing quantum information science and engineering (QISE)
industry will require both quantum-aware and quantum-proficient engineers at
the bachelor's level. We provide a roadmap for building a quantum engineering
education program to satisfy this need. For quantum-aware engineers, we
describe how to design a first quantum engineering course accessible to all
STEM students. For the education and training of quantum-proficient engineers,
we detail both a quantum engineering minor accessible to all STEM majors, and a
quantum track directly integrated into individual engineering majors. We
propose that such programs typically require only three or four newly developed
courses that complement existing engineering and science classes available on
most larger campuses. We describe a conceptual quantum information science
course for implementation at any post-secondary institution, including
community colleges and military schools. QISE presents extraordinary
opportunities to work towards rectifying issues of inclusivity and equity that
continue to be pervasive within engineering. We present a plan to do so and
describe how quantum engineering education presents an excellent set of
education research opportunities. Finally, we outline a hands-on training plan
on quantum hardware, a key component of any quantum engineering program, with a
variety of technologies including optics, atoms and ions, cryogenic and
solid-state technologies, nanofabrication, and control and readout electronics.
Our recommendations provide a flexible framework that can be tailored for
academic institutions ranging from teaching and undergraduate-focused two- and
four-year colleges to research-intensive universities.Comment: 25 pages, 2 figure
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29