7 research outputs found

    Hair Follicle Reconstruction and Stem Cells

    Get PDF
    De novo hair follicle (HF) formation in embryonic skin and hair growth in postnatal skin are the result of epithelial-mesenchymal interactions between specialized mesenchymal dermal papilla (DP) and epithelial stem cells that give rise to hairs. Adult HF is a valuable source of different lineages of stem cells (SCs) with morphogenetic potential. Epithelial stem cells are residing in the special compartment of HF (the bulge) and can be mobilized to regenerate the new follicle with each hair cycle and to reepithelialize epidermis during wound repair. This review summarizes the current knowledge on key characteristics of HF SC populations in terms of regenerative potential. General biological principles that govern the mesenchymal-epithelial interactions within the HF and the signaling pathways that control HF development are discussed. The main focus is on recent approaches to reconstruct folliculogenesis in vitro and perspectives of the tissue engineering in alopecia therapy

    Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate

    No full text
    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine

    Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer

    No full text
    Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations

    Tissue-engineered biological dressing accelerates skin wound healing in mice via formation of provisional connective tissue

    No full text
    Despite recent advances in bioengineered therapies, wound healing remains a serious clinical problem. In acute full-thickness wounds, it is desirable to replace both the damaged dermis and epidermis in a single procedure. This approach requires appropriate properties of tissue-engineered dressings to support simultaneous regenerative processes in the dermis and epidermis while they are temporally separated in the natural wound healing process. In this study, a collagen-based scaffold inhabited by skin cells was employed. Its ability to stimulate the skin repair of full-thickness excisional splinting wounds in a murine model was evaluated in comparison with that of acellular collagen and commercially available gelatin porous sponge Spongostan®. The study showed that cell-based skin equivalent promoted the immediate filling of the wound bed and provided simultaneous reorganization of the dermal component into highly vascularized granulation-like tissue and rapid epithelialization, thus improving the quality of healing. Inflammation was delayed and less pronounced. In contrast, acellular collagen and especially Spongostan® failed to demonstrate similar results. The porous structure of Spongostan® prevented effective long-term epithelialization and impeded the formation of an adequate connective tissue at the wound bed

    Trajectory of hiPSCs derived neural progenitor cells differentiation into dermal papilla-like cells and their characteristics

    No full text
    Abstract Dermal papilla cells (DPCs) play roles in key functions of the epidermis such as hair generation. The use of human induced pluripotent cells (hiPSCs) makes it possible to obtain DP-like cells and study the molecular mechanisms of DPC development during embryogenesis. In this work, we studied the phenotypic trajectory of hiPSCs during their differentiation into DP-like cells and evaluated the epithelial-mesenchymal interaction potential of the resulting cell line. Specifically, we differentiated hiPSCs into neural progenitor cells (NPCs) and subsequently into DP-like cells. Analysis of bulk RNA-seq data during this process enabled us to observe gene expression dynamics during five stages of dermal differentiation. Furthermore, functional assays (organoids in both collagen gels and hanging drop cultures and tubulogenesis assays) revealed that the dermal cell lines we generated could interact with epidermal cells
    corecore