29 research outputs found

    SHARDS: constraints on the dust attenuation law of star-forming galaxies at z∌2

    Get PDF
    We make use of the Survey of High-z Absorption Red and Dead Sources, an ultradeep (<26.5AB) galaxy survey that provides optical photospectra at resolution R similar to 50, via medium-band filters (FWHM similar to 150 angstrom). This data set is combined with ancillary optical and NIR fluxes to constrain the dust attenuation law in the rest-frame NUV region of star-forming galaxies within the redshift window 1.5 < z < 3. We focus on the NUV bump strength (B) and the total-to-selective extinction ratio (R-V), targeting a sample of 1753 galaxies. By comparing the data with a set of population synthesis models coupled to a parametric dust attenuation law, we constrain R-V and B, as well as the colour excess, E(B - V). We find a correlation between R-V and B, which can be interpreted either as a result of the grain size distribution, or a variation of the dust geometry among galaxies. According to the former, small dust grains are associated with a stronger NUV bump. The latter would lead to a range of clumpiness in the distribution of dust within the interstellar medium of star-forming galaxies. The observed wide range of NUV bump strengths can lead to a systematic in the interpretation of the UV slope beta typically used to characterize the dust content. In this study, we quantify these variations, concluding that the effects are Delta beta similar to 0.4

    Formation of stellar inner discs and rings in spiral galaxies through minor mergers

    Get PDF
    Recent observations show that inner disks and rings (IDs and IRs) are not preferentially found in barred galaxies, pointing to the relevance of formation mechanisms different to the traditional bar-origin scenario. Nevertheless, the role of minor mergers in the formation of these inner components (ICs), while often invoked, is still poorly understood. We have investigated the capability of minor mergers to trigger the formation of IDs and IRs in spiral galaxies through collisionless N-body simulations. Our models prove that minor mergers are an efficient mechanism to form rotationally-supported stellar ICs in spirals, neither requiring strong dissipation nor noticeable bars, and suggest that their role in the formation of ICs must have been much more complex than just bar triggering

    Formation of S0 galaxies through mergers Explaining angular momentum and concentration change from spirals to S0s

    Get PDF
    The CALIFA team has recently found that the stellar angular momentum and concentration of late-type spiral galaxies are incompatible with those of lenticular galaxies (S0s), concluding that fading alone cannot satisfactorily explain the evolution from spirals into S0s. Here we explore whether major mergers can provide an alternative way to transform spirals into S0s by analysing the spiral-spiral major mergers from the GalMer database that lead to realistic, relaxed S0-like galaxies. We find that the change in stellar angular momentum and concentration can explain the differences in the λ_Re-R_90/R_50 plane found by the CALIFA team. Major mergers thus offer a feasible explanation for the transformation of spirals into S0s

    Current status of FRIDA, diffraction limited NIR Instrument for the GTC

    Get PDF
    FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) is designed as a diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy capabilities with low (R similar to 1,500), intermediate (R similar to 4,500) and high (R similar to 30,000) spectral resolutions to operate in the wavelength range 0.9 - 2.5 mu m. The integral field unit is based on a monolithic image slicer. The imaging and IFS observing modes will use the same Teledyne 2K x 2K detector. FRIDA will be based at the Nasmyth B platform of GTC, behind the AO system. The key scientific objectives of the instrument include studies of solar system bodies, low mass objects, circumstellar outflow phenomena in advanced stages of stellar evolution, active galactic nuclei, high redshift galaxies, resolved stellar populations, semi-detached binary systems, young stellar objects and star forming environments. FRIDA is a collaborative project between the main GTC partners, namely, Spain, Mexico and Florida. In this paper, we present the status of the instrument design as it is currently being prepared for its manufacture, after an intensive prototypes' phase and design optimization. The CDR was held in September 2011

    Caught in the act: gas and stellar velocity dispersions in a fast Quenching compact star-forming galaxy at z ~ 1.7

    Get PDF
    We present Keck I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy at a redshift of z ~ 1.7. Its spectrum reveals both Hα and [Nii] emission lines and strong Balmer absorption lines. The Hα and Spitzer MIPS 24 ÎŒm fluxes are both weak, thus indicating a low star-formation rate of SFRâ‰Č5-10 M_⹀ yr−1. This, added to a relatively young age of ~700 Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to three other galaxies in our sample, by z ~ 1.5. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, σ_LOG^gas = 127 ± 32 km s^−1, is nearly 40% smaller than that of its stars, σ_LOG^* = 215 ± 35 km s^−1. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of ~1.5 with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors

    MIRADAS for the Gran Telescopio Canarias: System Overview

    Get PDF
    The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5 mu m bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofisica de Canarias, Institut de Fisica d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autonoma de Mexico, as well as probe arm industrial partner A-V-S (Spain). In this paper, we review the overall system design for MIRADAS, as it nears Preliminary Design Review in the autumn of 2012

    Type-II surface brightness profiles in edge-on galaxies produced by flares

    No full text
    © 2016 ESO. The authors thank to the anonymous referee for the useful criticisms that helped to improve this publication significantly and MartĂ­n LĂłpez-Corredoira for his kind support with the MW models. This research has been supported by the Ministerio de EconomĂ­a y Competitividad del Gobierno de España (MINECO) under project AYA2012-31277, and by the Instituto de AstrofĂ­sica de Canarias under project P3/86. We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr). This research has made use of the NASA Astrophysics Data System and NASA/IPAC Extragalactic Database (NED) and the R environment for statistical computing.Previous numerical studies had apparently ruled out the possibility that flares in galaxy discs could give rise to the apparent breaks in their luminosity profiles when observed edge-on. However the studies have not, until now, analysed this hypothesis systematically using realistic models for the disc, the flare, and the bulge. We revisit this theme by analysing a series of models which sample a wide range of observationally based structural parameters for these three components. Using observational data, we have considered realistic distributions of bulge-to-disc ratios, morphological parameters of bulges and discs, vertical scale heights of discs and their radial gradients defining the flare for different morphological types and stellar mass bins. The surface brightness profiles for the faceon and edge-on views of each model were simulated to find out whether the flared disc produces a Type-II break in the disc profile when observed edge-on, and if so under what conditions. Contrary to previous claims, we find that discs with realistic flares can produce significant breaks in discs when observed edge-on. Specifically a flare with the parameters of that of the Milky Way would produce a significant break of the disc at a R_(brkII) of ∌8.6 kpc if observed edge-on. Central bulges have no significant effects on the results. These simulations show that flared discs can explain the existence of many Type-II breaks observed in edge-on galaxies, in a range of galaxies with intermediate to low break strength values of −0.25 < S < −0.1.Ministerio de EconomĂ­a y Competitividad (MINECO)Instituto de AstrofĂ­sica de CanariasDepto. de FĂ­sica de la Tierra y AstrofĂ­sicaFac. de Ciencias FĂ­sicasTRUEpu

    Development of data reduction pipelines for GTC instruments at the UCM

    No full text
    © 2013: Instituto de Astronomía, UNAM. Science with the GTC Meeting (4th. 2011. Santa Cruz La Palma, SPAIN).The UCM Instrumentation Group (GUAIX) is developing currently Data Reduction Pipelines (DRP) for four instruments of the GTC: EMIR, FRIDA, MEGARA and MIRADAS. The purpose of the DRPs is to provide astronomers scientific quality data, removing instrumental biases, calibrating the images in physical units and providing a estimation of the associated uncertainties.Depto. de Física de la Tierra y AstrofísicaFac. de Ciencias FísicasTRUEpu
    corecore