7 research outputs found

    Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling

    Get PDF
    Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in a W-1% Re alloy after implantation with 3110 appm of helium. An observed lattice expansion of a fraction of a per cent gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale model, combining elasticity and density functional theory, is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Larger scale atomistic simulations using an empirical potential confirm the findings of the elasticity and density functional theory model for swelling. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.National Science Foundation (U.S.) (CHE-1111557

    Optical transient grating measurements of micro/nanoscale thermal transport and mechanical properties

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2015.Cataloged from PDF version of thesis.Includes bibliographical references (pages 109-119).The laser-based transient grating technique was used to study phonon mediated thermal transport in bulk and nanostructured semiconductors and surface wave propagation in a monolayer of micron sized spheres. In the transient grating technique two picosecond pulses are crossed to generate a spatially periodic intensity profile. The spatially periodic profile generates a material excitation with a well-defined wave vector. The time dependence of the spatially periodic material response is measured by monitoring the diffracted signal of an incident probe beam. Non-diffusive thermal transport was observed in thin Si membranes as well as bulk GaAs at relatively short (micron) transient grating periods. First-principles calculations of the phonon mean free paths in Si and GaAs were compared with experimental results and showed good agreement. Preliminary measurements on promising thermoelectric materials such as PbTe and Bi2Te3 are presented showing evidence of non-diffusive transport at short length scales. The transient grating technique was used to measure the thermal conductivity of Si membranes with thickness ranging from 15 nm to 1518 nm. Using the Fuchs-Sondheimer suppression function along with first-principles results, the thermal conductivity as a function of membrane thickness was calculated. The calculations showed excellent agreement with experimental measurements. A convex optimization algorithm was employed to reconstruct the phonon mean free path distribution from experimental measurements. This marks the first experimental determination of the mean free path distribution for a bulk material. Thermal conductivity measurements at low temperatures in a 200 nm Si membrane indicate the breakdown of the diffuse boundary scattering approximation. The transient grating technique was used to generate surface acoustic waves and measure their dispersion in a monolayer of 0.5 - 1 [mu]m diameter silica spheres. The measured dispersion curves show "avoided crossing" behavior due to the interaction between an axial contact resonance of the microspheres and the surface acoustic wave at a frequency of -200MHz for the 1 [mu]m spheres and -700 MHz for the 0.5 [m spheres. The experimental measurements were fit with an analytical model in which the contact stiffness was the only fitting parameter. Preliminary results of surface acoustic wave propagation in microsphere waveguides, transmission through a microsphere strip, and evidence of a nonlinear response in a 2D array of microspheres are presented.by Jeffrey Kristian Eliason.Ph. D

    Correcting for contact area changes in nanoindentation using surface acoustic waves

    No full text
    Nanoindentation is extensively used to quantify nano-scale mechanical behaviour. A widely-used assumption is that a well-defined, material-independent relationship exists between the indentation depth and indenter contact area. Here we demonstrate that this assumption is violated by ion-implanted tungsten, where pileup around the indenter tip leads to substantial changes in contact area. Using high accuracy surface acoustic wave measurements of elastic modulus, we are able to correct for this effect. Importantly we demonstrate that a priori knowledge of elastic properties can be readily used to compensate for pileup effects in nanoindentation without the need for any further measurements. Keywords: nanoindentation; pile-up; ion implantation; irradiation; surface acoustic wavesNational Science Foundation (U.S.) (Grant CHE-1111557

    Applications of Transient Grating Spectroscopy to Radiation Materials Science

    No full text
    The ability to study radiation damage in situ will directly enable the rapid innovation and qualification of materials for nuclear applications by allowing direct observation of the effects of radiation damage accumulation. This is a challenging task, as the measurement technique must be noncontact, nondestructive, rapid, and still allow for online irradiation without interference. Applicable methods of mechanical spectroscopy are surveyed, noting their potential usefulness for characterizing radiation-induced microstructural changes in situ. The transient grating (TG) spectroscopy technique appears most suited for these studies, due to its noncontact, nondestructive nature, its ability to rapidly probe materials to the depth of ion irradiation, and the large number of deconvolvable components extractable from its signal. Work is proposed to separate the individual mechanisms of irradiation damage using in situ and ex situ TG spectroscopy, through a suite of single-effect and integrated experiments.National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant No. 1122374)National Science Foundation (U.S.) (Grant No. CHE- 1111557

    Experimental Evidence of Non-Diffusive Thermal Transport in Si and GaAs

    No full text
    The length-scales at which thermal transport crosses from the diffusive to ballistic regime are of much interest particularly in the design and improvement of nano-structured materials. In this work, we demonstrate that the departure from diffusive transport has been observed in Si and GaAs using an optical transient thermal grating technique where an arbitrary, experimentally set length scale can be imposed on a material. In a transient thermal grating experiment, crossed laser pulses interfere creating a well-defined periodic absorption and temperature profile. A probe beam is diffracted from this transient grating and length-scale dependent thermal transport properties can be determined from the signal decay. As the length scale is decreased to lengths shorter than the mean free paths of heat carrying phonons, quasi-ballistic heat transport effects become apparent allowing us to map out length scales and mean free paths relevant to nondiffusive thermal transport in Si and GaAs.United States. Dept. of Energy. Office of Basic Energy Science (Solar-Thermal Energy Conversion Center (S3TEC), Award No. DE-SC0001299/DE-FG02-09ER46577)Seventh Framework Programme (European Commission) (NANOPOWER, contract number 256959)OpenAIRE (TAILPHOX, contract number 233883)European Commission (NANOFUNCTION, contract number 257375)Acphin Health Ltd. (ACPHIN, contract number FIS2009-150)Catalonia (Spain). Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR, 2009-SGR-150

    Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes

    No full text
    Knowledge of the mean-free-path distribution of heat-carrying phonons is key to understanding phonon-mediated thermal transport. We demonstrate that thermal conductivity measurements of thin membranes spanning a wide thickness range can be used to characterize how bulk thermal conductivity is distributed over phonon mean free paths. A noncontact transient thermal grating technique was used to measure the thermal conductivity of suspended Si membranes ranging from 15-1500 nm in thickness. A decrease in the thermal conductivity from 74-13% of the bulk value is observed over this thickness range, which is attributed to diffuse phonon boundary scattering. Due to the well-defined relation between the membrane thickness and phonon mean-free-path suppression, combined with the range and accuracy of the measurements, we can reconstruct the bulk thermal conductivity accumulation vs. phonon mean free path, and compare with theoretical models

    Thermal transport in suspended silicon membranes measured by laser-induced transient gratings

    No full text
    Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both "solid" and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood
    corecore