23 research outputs found

    Calcium sparks in the intact gerbil spiral modiolar artery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcium sparks are ryanodine receptor mediated transient calcium signals that have been shown to hyperpolarize the membrane potential by activating large conductance calcium activated potassium (BK) channels in vascular smooth muscle cells. Along with voltage-dependent calcium channels, they form a signaling unit that has a vasodilatory influence on vascular diameter and regulation of myogenic tone. The existence and role of calcium sparks has hitherto been unexplored in the spiral modiolar artery, the end artery that controls blood flow to the cochlea. The goal of the present study was to determine the presence and properties of calcium sparks in the intact gerbil spiral modiolar artery.</p> <p>Results</p> <p>Calcium sparks were recorded from smooth muscle cells of intact arteries loaded with fluo-4 AM. Calcium sparks occurred with a frequency of 2.6 Hz, a rise time of 17 ms and a time to half-decay of 20 ms. Ryanodine reduced spark frequency within 3 min from 2.6 to 0.6 Hz. Caffeine (1 mM) increased spark frequency from 2.3 to 3.3 Hz and prolonged rise and half-decay times from 17 to 19 ms and from 20 to 23 ms, respectively. Elevation of potassium (3.6 to 37.5 mM), presumably via depolarization, increased spark frequency from 2.4 to 3.2 Hz. Neither ryanodine nor depolarization changed rise or decay times.</p> <p>Conclusions</p> <p>This is the first characterization of calcium sparks in smooth muscle cells of the spiral modiolar artery. The results suggest that calcium sparks may regulate the diameter of the spiral modiolar artery and cochlear blood flow.</p

    Pharmacological reversal of endothelin-1 mediated constriction of the spiral modiolar artery: a potential new treatment for sudden sensorineural hearing loss

    Get PDF
    BACKGROUND: Vasospasm of the spiral modiolar artery (SMA) may cause ischemic stroke of the inner ear. Endothelin-1 (ET-1) induces a strong, long-lasting constriction of the SMA by increasing contractile apparatus Ca(2+ )sensitivity via Rho-kinase. We therefore tested several Rho-kinase inhibitors and a cell-permeable analogue of cAMP (dbcAMP) for their ability to reverse ET-1-induced constriction and Ca(2+)-sensitization. METHODS: The present study employed SMA isolated from gerbil temporal bones. Ca(2+)sensitivity was evaluated by correlating vascular diameter and smooth muscle cell [Ca(2+)](i), measured by fluo-4-microfluorometry and videomicroscopy. RESULTS: The Rho-kinase inhibitors Y-27632, fasudil, and hydroxy-fasudil reversed ET-1-induced vasoconstriction with an IC(50 )of 3, 15, and 111 ÎŒmol/L, respectively. DbcAMP stimulated a dose-dependent vasodilation (Ec(50 )= 1 mmol/L) and a reduction of [Ca(2+)](i )(EC(50 )= 0.3 ÎŒmol/L) of ET-1-preconstricted vessels (1 nmol/L). Fasudil and dbcAMP both reversed the ET-1-induced increase in Ca(2+ )sensitivity. CONCLUSION: Rho-kinase inhibition and dbcAMP reversed ET-1-induced vasoconstriction and Ca(2+)-sensitization. Therefore, Rho-kinase inhibitors or cAMP modulators could possess promise as pharmacological tools for the treatment of ET-1-induced constriction, ischemic stroke and sudden hearing loss

    Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently it has been shown that radiation induces migration of glioma cells and facilitates a further spread of tumor cells locally and systemically. The aim of this study was to evaluate whether radiotherapy induces migration in head and neck squamous cell carcinoma (HNSCC). A further aim was to investigate the effects of blocking the epidermal growth factor receptor (EGFR) and its downstream pathways (Raf/MEK/ERK, PI3K/Akt) on tumor cell migration in vitro.</p> <p>Methods</p> <p>Migration of tumor cells was assessed via a wound healing assay and proliferation by a MTT colorimeritric assay using 3 HNSCC cell lines (BHY, CAL-27, HN). The cells were treated with increasing doses of irradiation (2 Gy, 5 Gy, 8 Gy) in the presence or absence of EGF, EGFR-antagonist (AG1478) or inhibitors of the downstream pathways PI3K (LY294002), mTOR (rapamycin) and MEK1 (PD98059). Biochemical activation of EGFR and the downstream markers Akt and ERK were examined by Western blot analysis.</p> <p>Results</p> <p>In absence of stimulation or inhibition, increasing doses of irradiation induced a dose-dependent enhancement of migrating cells (p < 0.05 for the 3 HNSCC cell lines) and a decrease of cell proliferation (p < 0.05 for the 3 HNSCC cell lines). The inhibition of EGFR or the downstream pathways reduced cell migration significantly (almost all p < 0.05 for the 3 HNSCC cell lines). Stimulation of HNSCC cells with EGF caused a significant increase in migration (p < 0.05 for the 3 HNSCC cell lines). After irradiation alone a pronounced activation of EGFR was observed by Western blot analysis.</p> <p>Conclusion</p> <p>Our results demonstrate that the EGFR is involved in radiation induced migration of HNSCC cells. Therefore EGFR or the downstream pathways might be a target for the treatment of HNSCC to improve the efficacy of radiotherapy.</p

    Genetics of asthma: a molecular biologist perspective

    Get PDF
    Asthma belongs to the category of classical allergic diseases which generally arise due to IgE mediated hypersensitivity to environmental triggers. Since its prevalence is very high in developed or urbanized societies it is also referred to as "disease of civilizations". Due to its increased prevalence among related individuals, it was understood quite long back that it is a genetic disorder. Well designed epidemiological studies reinforced these views. The advent of modern biological technology saw further refinements in our understanding of genetics of asthma and led to the realization that asthma is not a disorder with simple Mendelian mode of inheritance but a multifactorial disorder of the airways brought about by complex interaction between genetic and environmental factors. Current asthma research has witnessed evidences that are compelling researchers to redefine asthma altogether. Although no consensus exists among workers regarding its definition, it seems obvious that several pathologies, all affecting the airways, have been clubbed into one common category called asthma. Needless to say, genetic studies have led from the front in bringing about these transformations. Genomics, molecular biology, immunology and other interrelated disciplines have unearthed data that has changed the way we think about asthma now. In this review, we center our discussions on genetic basis of asthma; the molecular mechanisms involved in its pathogenesis. Taking cue from the existing data we would briefly ponder over the future directions that should improve our understanding of asthma pathogenesis

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Apical membrane P2Y4 purinergic receptor controls K<sup>+ </sup>secretion by strial marginal cell epithelium

    No full text
    <p>Abstract</p> <p>Background</p> <p>It was previously shown that K<sup>+ </sup>secretion by strial marginal cell epithelium is under the control of G-protein coupled receptors of the P2Y family in the apical membrane. Receptor activation by uracil nucleotides (P2Y<sub>2</sub>, P2Y<sub>4 </sub>or P2Y<sub>6</sub>) leads to a decrease in the electrogenic K<sup>+</sup> secretion. The present study was conducted to determine the subtype of the functional purinergic receptor in gerbil stria vascularis, to test if receptor activation leads to elevation of intracellular [Ca<sup>2+</sup>] and to test if the response to these receptors undergoes desensitization.</p> <p>Results</p> <p>The transepithelial short circuit current (Isc) represents electrogenic K<sup>+ </sup>secretion and was found to be decreased by uridine 5'-triphosphate (UTP), adenosine 5'-triphosphate (ATP) and diadenosine tetraphosphate (Ap4A) but not uridine 5'-diphosphate (UDP) at the apical membrane of marginal cells of the gerbil stria vascularis. The potencies of these agonists were consistent with rodent P2Y<sub>4 </sub>and P2Y<sub>2 </sub>but not P2Y<sub>6 </sub>receptors. Activation caused a biphasic increase in intracellular [Ca<sup>2+</sup>] that could be partially blocked by 2-aminoethoxy-diphenyl borate (2-APB), an inhibitor of the IP3 receptor and store-operated channels. Suramin (100 ÎŒM) did not inhibit the effect of UTP (1 ÎŒM). The ineffectiveness of suramin at the concentration used was consistent with P2Y<sub>4 </sub>but not P2Y<sub>2</sub>. Transcripts for both P2Y<sub>2 </sub>and P2Y<sub>4 </sub>were found in the stria vascularis. Sustained exposure to ATP or UTP for 15 min caused a depression of Isc that appeared to have two components but with apparently no chronic desensitization.</p> <p>Conclusion</p> <p>The results support the conclusion that regulation of K<sup>+ </sup>secretion across strial marginal cell epithelium occurs by P2Y<sub>4 </sub>receptors at the apical membrane. The apparent lack of desensitization of the response is consistent with two processes: a rapid-onset phosphorylation of KCNE1 channel subunit and a slower-onset of regulation by depletion of plasma membrane PIP<sub>2</sub>.</p
    corecore