28 research outputs found

    Schistosoma mansoni Venom Allergen Like Proteins Present Differential Allergic Responses in a Murine Model of Airway Inflammation

    Get PDF
    The Schistosoma mansoni Venom Allergen Like proteins (SmVALs) have been identified in the Transcriptome and Post-Genomic studies as targets for immune interventions. Two secreted members of the family were obtained as recombinant proteins in the native conformation. Antibodies produced against them showed that SmVAL4 was present mostly in cercarial secretions and SmVAL26 in egg secretions and that only the native SmVAL4 contained carbohydrate moieties. Due to concerns with potential allergic characteristics of this class of molecules, we have explored the mouse model of airway inflammation in order to investigate these properties in a more confined system. Sensitization and challenge with rSmVAL4, but not rSmVAL26, induced extensive migration of cells to the lungs, mostly eosinophils and macrophages; moreover, immunological parameters were also characteristic of an allergic inflammatory response. Our results showed that the allergic potential of this class of proteins can be variable and that the vaccine candidates should be characterized; the mouse model of airway inflammation can be useful to evaluate these properties

    TLR2- and 4-independent immunomodulatory effect of high molecular weight components from Ascaris suum

    No full text
    Components of high molecular-weight (PI) obtained from Ascaris suum extract down-regulate the Th1/Th2-related immune responses induced by ovalbumin (OVA)-immunization in mice. Furthermore, the PI down-modulates the ability of dendritic cells (DCs) to activate T lymphocytes by an IL-10-mediated mechanism. Here, we evaluated the role of toll like receptors 2 and 4 (TLR2 and 4) in the modulatory effect of PI on OVA-specific immune response and the PI interference on DC full activation. An inhibition of OVA-specific cellular and humoral responses were observed in wild type (WT) or in deficient in TLR2 (TLR2(-/-)) or 4 (TLR4(-/-)) mice immunized with OVA plus PI when compared with OVA-immunized mice. Low expression of class II MHC, CD40, CD80 and CD86 molecules was observed in lymph node (LN) cells from WT, TLR2(-/-) or TLR4(-/-) mice immunized with OVA plus PI compared with OVA-primed cells. We also verified that PI was able to modulate the activation of DCs derived from bone marrow of WT, TLR2(-/-) or TLR4(-/-) mice induced in vitro by agonists of TLRs, as observed by a decreased expression of class II MHC and costimulatory molecules and by low secretion of pro-inflammatory cytokines. Its effect was accompanied by IL-10 synthesis. In this sense, the modulatory effect of PI on specific-immune response and DC activation is independent of TLR2 or TLR4.FAPESP, 2007/56883-7FAPESP, 2010/10393-1CAPESFAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), 2008/04201-2FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), 2011/23735-0CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico

    High molecular weight components containing N-linked oligosaccharides of Ascaris suum extract inhibit the dendritic cells activation through DC-SIGN and MR

    No full text
    Helminths, as well as their secretory/excretory products, induce a tolerogenic immune microenvironment. High molecular weight components (PI) from Ascaris suum extract down-modulate the immune response against ovalbumin (OVA). The PI exerts direct effect on dendritic cells (DCs) independent of TLR 2, 4 and MyD88 molecule and, thus, decreases the T lymphocytes response. Here, we studied the glycoconjugates in PI and the role of C-type lectin receptors (CLRs), DC-SIGN and MR, in the modulation of DCs activity. Our data showed the presence of glycoconjugates with high mannose- and complex-type N-linked oligosaccharide chains and phosphorylcholine residues on PI. In addition, these N-linked glycoconjugates inhibited the DCs maturation induced by LPS. The binding and internalization of PI-Alexa were decreased on DCs previously incubated with mannan, anti-DC-SIGN and/or anti-MR antibodies. In agreement with this, the incubation of DCs with mannan, anti-DC-SIGN and/or anti-MR antibodies abolished the down-modulatory effect of PI on these cells. It was also observed that the blockage of CLRs, DC-SIGN and MR on DCs reverted the inhibitory effect of PI in in vitro T cells proliferation. Therefore, our data show the involvement of DC-SIGN and MR in the recognition and consequent modulatory effect of N-glycosylated components of PI on DCs.Fil: Favoretto, Bruna C.. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: Casabuono, Adriana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Portes Junior, José A.. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; BrasilFil: Jacysyn, Jacqueline F.. Universidade de Sao Paulo; BrasilFil: Couto, Alicia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Faquim Mauro, Eliana L.. Governo do Estado de Sao Paulo. Secretaria da Saude. Instituto Butantan; Brasi

    Modulation of Adhesion Molecules Expression by Different Metalloproteases Isolated from <i>Bothrops</i> Snakes

    No full text
    Snake venom metalloproteinases (SVMP) are involved in local inflammatory reactions observed after snakebites. Based on domain composition, they are classified as PI (pro-domain + proteolytic domain), PII (PI + disintegrin-like domains), or PIII (PII + cysteine-rich domains). Here, we studied the role of different SVMPs domains in inducing the expression of adhesion molecules at the microcirculation of the cremaster muscle of mice. We used Jararhagin (Jar)—a PIII SVMP with intense hemorrhagic activity, and Jar-C—a Jar devoid of the catalytic domain, with no hemorrhagic activity, both isolated from B. jararaca venom and BnP-1—a weakly hemorrhagic P1 SVMP from B. neuwiedi venom. Toxins (0.5 µg) or PBS (100 µL) were injected into the scrotum of mice, and 2, 4, or 24 h later, the protein and gene expression of CD54 and CD31 in the endothelium, and integrins (CD11a and CD11b), expressed in leukocytes were evaluated. Toxins induced significant increases in CD54, CD11a, and CD11b at the initial time and a time-related increase in CD31 expression. In conclusion, our results suggest that, despite differences in hemorrhagic activities and domain composition of the SVMPs used in this study, they behave similarly to the induction of expression of adhesion molecules that promote leukocyte recruitment

    Crotoxin from <i>Crotalus durissus terrificus</i> Is Able to Down-Modulate the Acute Intestinal Inflammation in Mice

    No full text
    <div><p>Inflammatory bowel diseases (IBD) is the result of dysregulation of mucosal innate and adaptive immune responses. Factors such as genetic, microbial and environmental are involved in the development of these disorders. Accordingly, animal models that mimic human diseases are tools for the understanding the immunological processes of the IBD as well as to evaluate new therapeutic strategies. Crotoxin (CTX) is the main component of <i>Crotalus durissus terrificus</i> snake venom and has an immunomodulatory effect. Thus, we aimed to evaluate the modulatory effect of CTX in a murine model of colitis induced by 2,4,6- trinitrobenzene sulfonic acid (TNBS). The CTX was administered intraperitoneally 18 hours after the TNBS intrarectal instillation in BALB/c mice. The CTX administration resulted in decreased weight loss, disease activity index (DAI), macroscopic tissue damage, histopathological score and myeloperoxidase (MPO) activity analyzed after 4 days of acute TNBS colitis. Furthermore, the levels of TNF-α, IL-1β and IL-6 were lower in colon tissue homogenates of TNBS-mice that received the CTX when compared with untreated TNBS mice. The analysis of distinct cell populations obtained from the intestinal lamina propria showed that CTX reduced the number of group 3 innate lymphoid cells (ILC3) and Th17 population; CTX decreased IL-17 secretion but did not alter the frequency of CD4<sup>+</sup>Tbet<sup>+</sup> T cells induced by TNBS instillation in mice. In contrast, increased CD4<sup>+</sup>FoxP3<sup>+</sup> cell population as well as secretion of TGF-β, prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) and lipoxin A<sub>4</sub> (LXA<sub>4</sub>) was observed in TNBS-colitis mice treated with CTX compared with untreated TNBS-colitis mice. In conclusion, the CTX is able to modulate the intestinal acute inflammatory response induced by TNBS, resulting in the improvement of clinical status of the mice. This effect of CTX is complex and involves the suppression of the pro-inflammatory environment elicited by intrarectal instillation of TNBS due to the induction of a local anti-inflammatory profile in mice.</p></div

    Effect of CTX treatment on the colitis induced by TNBS instillation in BALB/c mice.

    No full text
    <p><b>(A)</b> Body weight changes (%) of BALB/c mice during four days after the intrarectal instillation of TNBS (2.5 mg/animal) in 45% ethanol solution. The control mice received the 45% of ethanol solution. CTX (0.035 mg/kg) was administered i.p. 18 h after TNBS-induced colitis, and saline solution was administered as control. # <i>(p</i><0.05) ETOH versus TNBS and TNBS+CTX; o <i>(p</i><0.05) ETOH+CTX versus TNBS and TNBS+CTX; α <i>(p</i><0.05) TNBS versus TNBS+CTX (n = 4–6 mice/group). <b>(B)</b> Disease activity index calculated as described in material and methods. The results were expressed as mean ± SEM (n = 4–6 mice/group); <b>(C)</b> Macroscopic appearance of colonic portion (4 cm) obtained from each mice/group at 4 days after TNBS-induced colitis; <b>(D)</b> Histological analysis of perirectal segment from mice of distinct experimental groups stained with H&E (Structures: (e) epithelial damage, (i) inflammatory infiltrate and (s) submucosa edema) obtained after 4 days of TNBS-colitis; <b>(E)</b> Histological score of inflammatory reaction perirectal segment of each experimental group of mice (n = 4–5 mice/group); <b>(F)</b> MPO activity of colonic tissue of each experimental mice-group. Groups: ETOH (control- 45% ETOH); ETOH+CTX (45% ethanol group treated with CTX); TNBS (TNBS instillation in 45% ETOH- inflammatory bowel disease) and TNBS+CTX (TNBS-instillation in 45% ETOH that received the CTX) (n = 4–5 animals/group). * <i>p</i><0.05; *** <i>p</i><0.001.</p

    Design and Production of a Recombinant Hybrid Toxin to Raise Protective Antibodies against <em>Loxosceles</em> Spider Venom

    No full text
    Human accidents with spiders of the genus Loxosceles are an important health problem affecting thousands of people worldwide. Patients evolve to severe local injuries and, in many cases, to systemic disturbances as acute renal failure, in which cases antivenoms are considered to be the most effective treatment. However, for antivenom production, the extraction of the venom used in the immunization process is laborious and the yield is very low. Thus, many groups have been exploring the use of recombinant Loxosceles toxins, particularly phospholipases D (PLDs), to produce the antivenom. Nonetheless, some important venom activities are not neutralized by anti-PLD antibodies. Astacin-like metalloproteases (ALMPs) are the second most expressed toxin acting on the extracellular matrix, indicating the importance of its inclusion in the antigen’s formulation to provide a better antivenom. Here we show the construction of a hybrid recombinant immunogen, called LgRec1ALP1, composed of hydrophilic regions of the PLD and the ALMP toxins from Loxosceles gaucho. Although the LgRec1ALP1 was expressed as inclusion bodies, it resulted in good yields and it was effective to produce neutralizing antibodies in mice. The antiserum neutralized fibrinogenolytic, platelet aggregation and dermonecrotic activities elicited by L. gaucho, L. laeta, and L. intermedia venoms, indicating that the hybrid recombinant antigen may be a valuable source for the production of protective antibodies against Loxosceles ssp. venoms. In addition, the hybrid recombinant toxin approach may enrich and expand the alternative antigens for antisera production for other venoms

    CD4<sup>+</sup>Tbet<sup>+</sup> cell population and IFN-γ secretion of mice with acute colitis induced by TNBS treated or not with CTX.

    No full text
    <p><b>(A)</b> Representative dot plots of CD4<sup>+</sup>Tbet<sup>+</sup> cells in the lamina propria of distinct group of mice. <b>(B)</b> CD4<sup>+</sup>Tbet<sup>+</sup> cells were expressed as a mean of the absolute number of cells ± SEM. The samples were prepared from a pool of cells from 4–5 animals/group performed in duplicate. The results are from 3 independent experiments. <b>(C)</b> Secretion of IFN-γ in colonic tissue homogenates determined by ELISA. The results represent the mean obtained in the individual samples/group ± SEM. * <i>p</i><0.05, ** <i>p</i><0.01 and *** <i>p</i><0.001; (n = 4–5 animals/group).</p
    corecore