1,904 research outputs found

    Polymerization Efficiency of Glass-Ionomer and Resin Adhesives under Molar Bands

    Get PDF
    Objective: To determine the degree of cure of a light-cured resin-modified glass ionomer (RMGI) under molar bands compared with a light-cured resin and a dual-cured resin. Materials and Methods: The 3 cements used were Fuji Ortho LC, Eagle Spectrum resin, and Variolink II dual-cure. Each sample was indirectly light cured for 20 seconds (10 seconds occlusally, 10 seconds cervically) under sections of molar bands, and the degree of cure was evaluated with micro-MIR FTIR spectroscopy. Results: The RMGI exhibited a significantly higher mean degree of cure (55.31%) than both of the resins (Eagle 19.23%; Variolink II, 25.42%), which did not differ significantly at α = .05 level of significance. Conclusion: Higher degree of conversion can be obtained from RMGIs under molar bands compared with composite resin adhesives provided the proper curing technique is used

    Do the Mechanical and Chemical Properties of Invisalign\u3csup\u3eTM\u3c/sup\u3e Appliances Change After Use? A Retrieval Analysis

    Get PDF
    Aim: To investigate the mechanical and chemical alterations of Invisalign appliances after intraoral aging. Materials and methods: Samples of Invisalign appliances (Align Technology, San Jose, California, USA) were collected following routine treatment for a mean period of 44±15 days (group INV), whereas unused aligners of the same brand were used as reference (group REF). A small sample from the central incisors region was cut from each appliance and the buccal surface was analysed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy (n = 5). Then the appliances were cut (n = 25) and embedded in acrylic resin, ground/polished in a grinding polishing machine, and the prepared surfaces were subjected to Instrumented Indentation Testing under 4.9 N load. Force-indentation depth curves were recorded for each group and the following parameters were calculated according to ISO 14577-1; 2002 specification: indentation modulus (E IT), elastic to total work ratio also known as elastic index (ηIT), Martens Hardness (HM), and indentation creep (C IT) The mean values of the mechanical properties were statistically analysed by unpaired t-test (a = 0.05). Results: ATR-FTIR analysis confirmed the urethane based structure of the appliances, without important chemical differences attributed to the aging process. INV group showed significantly lower E IT (REF: 2466±20, INV: 2216±168MPa), HM (REF: 119±1, INV: 110±6 N mm−2) and higher ηIT (REF: 40.0±0.3, INV: 41.5±1.2%), and C IT (REF: 3.7±0.2 INV: 4.0±0.1%). The increase in ηIT indicates that INV is a more brittle than REF, whereas the increase in C IT, a decrease in creep resistance. Conclusion: Despite the lack of detectable chemical changes, intraoral aging adversely affected the mechanical properties of the Invisalign appliance

    Structure, Composition, and Mechanical Properties of Australian Orthodontic Wires

    Get PDF
    Objective: To investigate the surface morphology, structure, elemental composition, and key mechanical properties of various sizes and tempers of Australian wires. Materials and Methods: Three types of Australian wire were used: 0.016″ regular, 0.018″ regular+, and 0.018″ special+ (A.J. Wilcock, Whittlesea, Victoria, Australia). Each type of wire was subjected to scanning electron microscopy (SEM) analysis, x-ray energy dispersive spectroscopy (EDS) investigation, Vickers hardness testing, and tensile testing. The modulus of elasticity and ultimate tensile strength were determined. Hardness, modulus, and strength data were analyzed with one-way analysis of variance (ANOVA) and Tukey testing at the .05 level of significance. Results: All three types of Australian wire were found to possess considerably rough surfaces with striations, irregularities, and excessive porosity. All three wire types had high levels of carbon and a similar hardness, which ranged within 600 VHN (Vickers hardness number), and a similar modulus of elasticity (173 to 177 GPa). The 0.018″ special+ had a significantly lower tensile strength (1632 MPa) than the 0.016″ regular and the 0.018″ regular+ wire (2100 MPa). Conclusions: Australian wires did not show variation implied by the size or temper of the wires

    Porcelain Surface Roughness, Color and Gloss Changes after Orthodontic Bonding

    Get PDF
    The purpose of this study was to evaluate the alteration in surface characteristics after orthodontic debonding of two types of porcelain systems commonly used in prosthetic dentistry. For this purpose, porcelain specimens were fabricated from low-fusing (n = 20) and high-fusing (n = 20) porcelain. The baseline surface roughness, color, and gloss were evaluated using profilometry, color shade index, and gloss study. All specimens were bonded with brackets and debonded using a testing machine at a rate of 0.1 mm/minute crosshead speed. The porcelain surfaces were polished using a 12-fluted carbide composite removal bur (low-fusing, n = 20; high-fusing, n = 20). In addition, half of each porcelain group was further polished using a series of Sof-Lex discs (low-fusing, n = 10; high-fusing, n = 10). The postdebond porcelain surface characteristics roughness, color, and gloss were reevaluated and compared with baseline measurements. The results were analyzed with two-way analysis of variance and Tukey multiple comparisons test, with porcelain type (low-fusing or high-fusing) and polishing protocol (carbide bur or carbide bur and discs) serving as discriminate variables at α = 0.05 level of significance. Bonding and debonding increased all roughness parameters tested; however, no change was revealed between the two polishing protocols. Similarly, gloss and color index changes were significantly altered after resin grinding, regardless of the polishing method used. No difference was identified between the two porcelain types with respect to roughness, color index, or gloss. Orthodontic bonding alters the porcelain surfaces, and postdebond polishing does not restore the surface to the prebond state

    3 People

    Get PDF

    Three People

    Get PDF

    Force to Debond Brackets from High-fusing and Low-fusing Porcelain Systems

    Get PDF
    The purpose of this study was to test the hypothesis that porcelain surface finishing, ie, low- and high-fusing porcelain, has an effect on the amount of force required to debond orthodontic brackets. A total of 20 high-fusing and 20 low-fusing porcelain specimens were prepared, polished, and bonded with standard edgewise brackets using a suggested porcelain bonding protocol. The brackets were debonded with a universal testing machine at shear mode. Resin removal was performed using two methods: a multifluted carbide bur with and without the use of Sof-Lex polishing discs. Representative specimens were studied under a scanning electron microscope before and after debonding to assess the surface morphology and potential surface damage. Statistical analysis with a t-test revealed that there was no difference between the two porcelain treatments on the force to debond values and no qualitative differences were observed on the porcelain surface between the two resin clean-up methods. From a clinical perspective, the practitioner can bond ceramic restorations without previous knowledge of the porcelain type used

    Identifying Security-Critical Cyber-Physical Components in Industrial Control Systems

    Get PDF
    In recent years, Industrial Control Systems (ICS) have become an appealing target for cyber attacks, having massive destructive consequences. Security metrics are therefore essential to assess their security posture. In this paper, we present a novel ICS security metric based on AND/OR graphs that represent cyber-physical dependencies among network components. Our metric is able to efficiently identify sets of critical cyber-physical components, with minimal cost for an attacker, such that if compromised, the system would enter into a non-operational state. We address this problem by efficiently transforming the input AND/OR graph-based model into a weighted logical formula that is then used to build and solve a Weighted Partial MAX-SAT problem. Our tool, META4ICS, leverages state-of-the-art techniques from the field of logical satisfiability optimisation in order to achieve efficient computation times. Our experimental results indicate that the proposed security metric can efficiently scale to networks with thousands of nodes and be computed in seconds. In addition, we present a case study where we have used our system to analyse the security posture of a realistic water transport network. We discuss our findings on the plant as well as further security applications of our metric.Comment: Keywords: Security metrics, industrial control systems, cyber-physical systems, AND-OR graphs, MAX-SAT resolutio
    • …
    corecore