9 research outputs found

    The direct effect of platelets on EPCs functional properties and its comparison to the platelets’ indirect effect.

    No full text
    <p><b>A.</b> The average number of colonies per field ± SE in EPCs cultured with vs. without platelets, p<0.05, n = 13 (Wilcoxon matched-pairs signed-rank test). The capacity to form colonies was higher in EPCs cultured with platelets compared to EPCs cultured alone. <b>B.</b> Culture viability expressed as OD (560 nm) ± SE in EPCs cultured with vs. without platelets, p<0.05, n = 11 (Wilcoxon matched-pairs signed-rank test). EPCs cultured with platelets have enhanced culture viability. <b>C.</b> FACS analysis of the average number of Tie-2 expressing cells ± SE in EPCs cultured with vs. without platelets, p<0.05, n = 7 (Wilcoxon matched-pairs signed-rank test. A higher percent of Tie-2 expressing cells appear in EPCs cultured with platelets compared to EPCs cultured alone. D–F Direct vs indirect effect of platelets on EPCs ability to form colonies (D), culture viability (E) and the expression of Tie-2(F), for n = 13 or 11 or 7 respectively, p = NS for all. There was no significant difference in any of the tested parameters in EPCs incubated with platelets directly vs. indirectly.</p

    The indirect effect of platelets on EPCs’ functional properties.

    No full text
    <p><b>A.</b> The average number of colonies per field ± SE in EPCs cultured with vs. without platelets, p<0.05, n = 13 (Wilcoxon matched-pairs signed-rank test). The capacity to form colonies was higher in EPCs cultured with platelets compared to EPCs cultured alone<b>. B.</b> Culture viability expressed as OD (560 nm) ± SE in EPCs cultured with vs. without platelets, p<0.05, n = 11 (Wilcoxon matched-pairs signed-rank test). EPCs cultured with platelets have enhanced culture viability. <b>C.</b> FACS analysis of the average number of Tie-2 expressing cells ± SE in EPCs cultured with vs. without platelets, p<0.05, n = 7 (Wilcoxon matched-pairs signed-rank test. A higher percent of Tie-2 expressing cells appear in EPCs cultured with platelets compared to EPCs cultured alone. <b>D.</b> Representative EPC colonies with platelets (right) compared to EPCs cultured alone (left). <b>E.</b> FACS analysis representative figure of Tie-2 expressing cells.</p

    bFGF inhibition and its effect on EPCs differentiation.

    No full text
    <p><b>A.</b> The average number of colonies per field ± SE in EPCs cultured with platelets compared to EPCs cultured with platelets and FGF inhibitor or alone, P<0.05, n = 23 (Friedman test followed by Wilcoxon matched-pairs signed-rank test) The ability to form colonies was higher in EPCs cultured with platelets compared to EPCs cultured alone or with platelets and FGF inhibitor. <b>B–C.</b> FACS analysis of the average number of VE-cadherin (A) and Tie-2 (B) expressing cells ± SE, p<0.05, n = 11 for A, p<0.05 n = 10 for B. EPCs cultured with platelets have a higher proportion of Tie-2 and VE-cadherin expressing cells compared to EPCs cultured alone or with platelets and bFGF inhibitor.</p

    PDGF inhibition and its effect on EPCs functional properties.

    No full text
    <p><b>A.</b> The average number of colonies per field ± SE in EPCs cultured with platelets compared to EPCs cultured with platelets and PDGF inhibitor or alone, n = 23, p<0.05, p<0.001. (Friedman test followed by Wilcoxon matched-pairs signed-rank test) The ability to form colonies was higher in EPCs cultured with platelets compared to EPCs cultured alone or with platelets and PDGF inhibitor. <b>B.</b> Culture viability expressed as OD (560 nm) ± SE in EPCs cultured with platelets compared to EPCs cultured with platelets and PDGF inhibitor or alone p<0.05, n = 11(Friedman test followed by Wilcoxon matched-pairs signed-rank test). EPCs cultured with platelets had greater culture viability compared to EPCs cultured with platelets and PDGF inhibitor or alone<b>. C–D</b> FACS analysis expressed as the average number of VE-cadherin (C) and Tie-2(D) expressing cells ± SE in EPCs cultured with platelets compared to EPCs cultured with platelets and PDGF inhibition or alone, p<0.05, n = 8 for C, p<0.05, n = 11 for D (Friedman test followed by Wilcoxon matched-pairs signed-rank test)<b>.</b> EPCs cultured with platelets have a higher percent of VE-cadherin (C) and Tie-2(D) expressing cells compared to EPCs cultured alone or with platelets and PDGF inhibitor. <b>E.</b> Representative EPC colonies with platelets (center) compared to EPCs cultured alone (left) or with platelets and PDGF inhibitor (right). <b>F.</b> FACs analysis representative figure of VE-cadherin expressing cells in EPCs cultured with platelets with or without PDGF inhibitor.</p

    PDGF and FGF protein levels on EPC-PLT supernatant and relative PDGF B/C mRNA levels in EPCs following co incubation with platelets.

    No full text
    <p><b>A–B.</b> PDGF(A) and FGF(B) levels expressed as pg/ml ± SE in supernatants of EPCs cultured with vs. without platelets, n = 11, p<0.05 for A, n = 5 p = NS for B (Wilcoxon matched-pairs signed-rank test). PDGF levels were significantly higher in EPCs cultured with platelets compared to EPCs cultured alone. There were no significant differences in FGF levels between the two groups. <b>C–D.</b> PDGFC(C) and PDGFB(D) relative expression appears as AU ± SE in EPCs cultured with vs. without platelets, n = 6 p<0.05 for A, n = 8, p = NS for B (Wilcoxon matched-pairs signed-rank test). PDGFC mRNA levels were significantly higher in EPCs cultured with platelets compared to EPCs cultured alone (C). There were no significant differences in PDGFB levels between the two groups (D).</p

    Gold Nanorods as Absorption Contrast Agents for the Noninvasive Detection of Arterial Vascular Disorders Based on Diffusion Reflection Measurements

    No full text
    In this study we report the use of gold nanorods (GNRs) as absorption contrast agents in the diffusion reflection (DR) method for the in vivo detection of atherosclerotic injury. The early detection and characterization of atherosclerotic vascular disease is considered to be one of the greatest medical challenges today. We show that macrophage cells, which are major components of unstable active atherosclerotic plaques, uptake gold nanoparticles, resulting in a change in the optical properties of tissue-like phantoms and a unique DR profile. In vivo DR measurements of rats that underwent injury of the carotid artery showed a clear difference between the DR profiles of the injured compared with healthy arteries. The results suggest that DR measurements following GNRs administration represent a potential novel method for the early detection of atherosclerotic vascular disease

    Gold Nanorods as Absorption Contrast Agents for the Noninvasive Detection of Arterial Vascular Disorders Based on Diffusion Reflection Measurements

    No full text
    In this study we report the use of gold nanorods (GNRs) as absorption contrast agents in the diffusion reflection (DR) method for the in vivo detection of atherosclerotic injury. The early detection and characterization of atherosclerotic vascular disease is considered to be one of the greatest medical challenges today. We show that macrophage cells, which are major components of unstable active atherosclerotic plaques, uptake gold nanoparticles, resulting in a change in the optical properties of tissue-like phantoms and a unique DR profile. In vivo DR measurements of rats that underwent injury of the carotid artery showed a clear difference between the DR profiles of the injured compared with healthy arteries. The results suggest that DR measurements following GNRs administration represent a potential novel method for the early detection of atherosclerotic vascular disease

    Angiopoietic markers in EPCs.

    No full text
    <p>Flow cytometry analysis for VE-Cadherin and TIE-2 in EPCs from patients with diabetes mellitus and healthy volunteers before and after in vitro vitamin D supplementation.</p

    EPCs viability expressed by MTT assay.

    No full text
    <p>MTT in EPCs from patients with diabetes, with vs. without in vitro vitamin D supplementation (A). MTT in EPCs from Healthy volunteers, with vs. without in vitro vitamin D supplementation (B). The change in MTT values (delta MTT) after in vitro vitamin D supplementation in patients with diabetes mellitus who were previously treated with oral vitamin D vs those who were not (C).</p
    corecore