37 research outputs found

    Dynamic spin Jahn-Teller effect in small magnetic clusters

    Get PDF
    Abstract.: We study the effect of spin-phonon coupling in small magnetic clusters, concentrating on a S=1/2 ring of 4 spins coupled antiferromagnetically. If the phonons are treated as classical variables, there is a critical value of the spin-phonon coupling above which a static distortion occurs. This is a good approximation if the zero point energy is small compared to the energy gain due to the distortion, which is true for large exchange interactions compared to the phonon energy (J≫ħω). In the opposite limit, one can integrate out the phonon degrees of freedom and get an effective spin Hamiltonian. Using exact diagonalizations to include the quantum nature of both spins and phonons, we obtain the spectrum in the whole range of parameters and explicit the crossover between the classical and quantum regimes. We then establish quantitatively the limits of validity of two widely used approaches (one in the quantum and one in the classical limits) and show that they are quite poor for small magnetic clusters. We also show that upon reducing ħω/J the first excitation of a 4-site cluster becomes a singlet, a result that could be relevant for Cu2Te2O5Br

    Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky-Moriya interactions

    Full text link
    The Heisenberg nearest neighbour antiferromagnet on the pyrochlore (3D) lattice is highly frustrated and does not order at low temperature where spin-spin correlations remain short ranged. Dzyaloshinsky-Moriya interactions (DMI) may be present in pyrochlore compounds as is shown, and the consequences of such interactions on the magnetic properties are investigated through mean field approximation and monte carlo simulations. It is found that DMI (if present) tremendously change the low temperature behaviour of the system. At a temperature of the order of the DMI a phase transition to a long range ordered state takes place. The ordered magnetic structures are explicited for the different possible DMI which are introduced on the basis of symmetry arguments. The relevance of such a scenario for pyrochlore compounds in which an ordered magnetic structure is observed experimentally is dicussed

    Dzyaloshinski-Moriya interactions in the kagome lattice

    Full text link
    The kagom\'e lattice exhibits peculiar magnetic properties due to its strongly frustated cristallographic structure, based on corner sharing triangles. For nearest neighbour antiferromagnetic Heisenberg interactions there is no Neel ordering at zero temperature both for quantum and classical s pins. We show that, due to the peculiar structure, antisymmetric Dzyaloshinsky-Moriya interactions (D.(SiĂ—Sj){\bf D} . ({\bf S}_i \times {\bf S}_j)) are present in this latt ice. In order to derive microscopically this interaction we consider a set of localized d-electronic states. For classical spins systems, we then study the phase diagram (T, D/J) through mean field approximation and Monte-Carlo simulations and show that the antisymmetric interaction drives this system to ordered states as soon as this interaction is non zero. This mechanism could be involved to explain the magnetic structure of Fe-jarosites.Comment: 4 pages, 2 figures. Presented at SCES 200

    A study of long range order in certain two-dimensional frustrated lattices

    Full text link
    We have studied the Heisenberg antiferromagnets on two-dimensional frustrated lattices, triangular and kagome lattices using linear spin-wave theory. A collinear ground state ordering is possible if one of the three bonds in each triangular plaquette of the lattice becomes weaker or frustrated. We study spiral order in the Heisenberg model along with Dzyaloshinskii-Moriya (DM) interaction and in the presence of a magnetic field. The quantum corrections to the ground state energy and sublattice magnetization are calculated analytically in the case of triangular lattice with nearesr-neighbour interaction. The corrections depend on the DM interaction strength and the magnetic field. We find that the DM interaction stabilizes the long-range order, reducing the effect of quantum fluctuations. Similar conclusions are reached for the kagome lattice. We work out the linear spin-wave theory at first with only nearest-neighbour (nn) terms for the kagome lattice. We find that the nn interaction is not sufficient to remove the effects of low energy fluctuations. The flat branch in the excitation spectrum becomes dispersive on addition of furthet neighbour interactions. The ground state energy and the excitation spectrum have been obtained for various cases.Comment: 18 pages, 9 figure

    Dynamic spin Jahn-Teller effect in small magnetic clusters

    Full text link
    We study the effect of spin-phonon coupling in small magnetic clusters, concentrating on a S=1/2 ring of 4 spins coupled antiferromagnetically. If the phonons are treated as classical variables, there is a critical value of the spin-phonon coupling above which a static distortion occurs. This is a good approximation if the zero point energy is small compared to the energy gain due to the distortion, which is true for large exchange interactions compared to the phonons energy (J≫ℏωJ\gg\hbar\omega). In the opposite limit, one can integrate out the phonon degrees of freedom and get an effective spin hamiltonian. Using exact diagonalizations to include the quantum nature of both spins and phonons, we obtain the spectrum in the whole range of parameters and explicit the crossover between the classical and quantum regimes. We then establish quantitatively the limits of validity of two widely used approaches (one in the quantum and one in the classical limits) and show that they are quite poor for small magnetic clusters. We also show that upon reducing ℏω/J\hbar\omega/J the first excitation of a 4-site cluster becomes a singlet, a result that could be relevant for Cu2_2Te2_2O5_5Br2_2

    Spin-orbit effects in Na4_4Ir3_3O8_8, a hyper-kagom\'{e} lattice antiferromagnet

    Full text link
    We consider spin-orbit coupling effects in Na4_4Ir3_3O8_8, a material in which Ir4+^{4+} spins form an hyper-kagom\'{e} lattice, a three-dimensional network of corner-sharing triangles. We argue that both low temperature thermodynamic measurements and the impurity susceptibility induced by dilute substitution of Ti for Ir are suggestive of significant spin-orbit effects. Because of uncertainties in the crystal-field parameters, we consider two limits in which the spin-orbit coupling is either weak or strong compared to the non-cubic atomic splittings. A semi-microscopic calculation of the exchange Hamiltonian confirms that indeed large antisymmetric Dzyaloshinskii-Moriya (DM) and/or symmetric exchange anisotropy may be present. In the strong spin-orbit limit, the Ir-O-Ir superexchange contribution consists of unfrustrated strong symmetric exchange anisotropy, and we suggest that spin-liquid behavior is unlikely. In the weak spin-orbit limit, and for strong spin-orbit and direct Ir-Ir exchange, the Hamiltonian consists of Heisenberg and DM interactions. The DM coupling is parametrized by a three component DM vector (which must be determined empirically). For a range of orientation of this vector, frustration is relieved and an ordered state occurs. For other orientations, even the classical ground states are very complex. We perform spin-wave and exact diagonalization calculations which suggest the persistence of a quantum spin liquid in the latter regime. Applications to Na4_4Ir3_3O8_8 and broader implications are discussed.Comment: 22 pages, 15 figures. submit to prb. New references are adde

    Ising transition driven by frustration in a 2D classical model with SU(2) symmetry

    Full text link
    We study the thermal properties of the classical antiferromagnetic Heisenberg model with both nearest (J1J_1) and next-nearest (J2J_2) exchange couplings on the square lattice by extensive Monte Carlo simulations. We show that, for J2/J1>1/2J_2/J_1 > 1/2 , thermal fluctuations give rise to an effective Z2Z_2 symmetry leading to a {\it finite-temperature} phase transition. We provide strong numerical evidence that this transition is in the 2D Ising universality class, and that Tc→0T_c\to 0 with an infinite slope when J2/J1→1/2J_2/J_1\to 1/2.Comment: 4 pages with 4 figure

    Symmetry breaking due to Dzyaloshinsky-Moriya interactions in the kagome lattice

    Full text link
    Due to the particular geometry of the kagom\'e lattice, it is shown that antisymmetric Dzyaloshinsky-Moriya interactions are allowed and induce magnetic ordering. The symmetry of the obtained low temperature magnetic phases are studied through mean field approximation and classical Mont\'e Carlo simulations. A phase diagram relating the geometry of the interaction and the ordering temperature has been derived. The order of magnitude of the anisotropies due to Dzyaloshinsky-Moriya interactions are more important than in non-frustrated magnets, which enhances its appearance in real systems. Application to the jarosites compounds is proposed. In particular, the low temperature behaviors of the Fe and Cr-based jarosites are correctly described by this model.Comment: 6 (revtex4) twocolumn pages, 6 .eps figures. Submitted to Phys. Rev.

    High-field Phase Diagram and Spin Structure of Volborthite Cu3V2O7(OH)2/2H2O

    Full text link
    We report results of 51V NMR experiments on a high-quality powder sample of volborthite Cu3V2O7(OH)2/2H2O, a spin-1/2 Heisenberg antiferromagnet on a distorted kagome lattice. Following the previous experiments in magnetic fields BB below 12 T, the NMR measurements have been extended to higher fields up to 31 T. In addition to the two already known ordered phases (phases I and II), we found a new high-field phase (phase III) above 25 T, at which a second magnetization step has been observed. The transition from the paramagnetic phase to the antiferromagnetic phase III occurs at 26 K, which is much higher than the transition temperatures from the paramagnetic to the lower field phases I (B < 4.5 T) and II (4.5 < B < 25 T). At low temperatures, two types of the V sites are observed with different relaxation rates and line shapes in phase III as well as in phase II. Our results indicate that both phases II and III exhibit a heterogeneous spin state consisting of two spatially alternating Cu spin systems, one of which exhibits anomalous spin fluctuations contrasting with the other showing a conventional static order. The magnetization of the latter system exhibits a sudden increase upon entering into phase III, resulting in the second magnetization step at 26 T.We discuss the possible spin structure in phase III.Comment: 9 pages, 12 figure

    Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet

    Full text link
    The search for the resonating valence bond (RVB) state continues to underpin many areas of condensed matter research. The RVB is made from the dimerisation of spins on different sites into fluctuating singlets, and was proposed by Anderson to be the reference state from which the transition to BCS superconductivity occurs. Little is known about the state experimentally, due to the scarcity of model materials. Theoretical work has put forward the S = 1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good approximation to a 2-dimensional kagome antiferromagnet and that susceptibility data indicate a collapse of the magnetic moment below T = 25 K that is compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure
    corecore