12 research outputs found

    IRF4 and BATF are critical for CD8(+) T-cell function following infection with LCMV.

    Get PDF
    CD8(+) T-cell functions are critical for preventing chronic viral infections by eliminating infected cells. For healthy immune responses, beneficial destruction of infected cells must be balanced against immunopathology resulting from collateral damage to tissues. These processes are regulated by factors controlling CD8(+) T-cell function, which are still incompletely understood. Here, we show that the interferon regulatory factor 4 (IRF4) and its cooperating binding partner B-cell-activating transcription factor (BATF) are necessary for sustained CD8(+) T-cell effector function. Although Irf4(-/-) CD8(+) T cells were initially capable of proliferation, IRF4 deficiency resulted in limited CD8(+) T-cell responses after infection with the lymphocytic choriomeningitis virus. Consequently, Irf4(-/-) mice established chronic infections, but were protected from fatal immunopathology. Absence of BATF also resulted in reduced CD8(+) T-cell function, limited immunopathology, and promotion of viral persistence. These data identify the transcription factors IRF4 and BATF as major regulators of antiviral cytotoxic T-cell immunity

    In vivo generation of cytotoxic T cells from epitopes displayed on peptide-based delivery vehicles

    No full text
    This article is hosted on a website external to the CBCRA Open Access Archive. Selecting “View/Open” below will launch the full-text article in another browser window

    c-Rel phenocopies PKCθ but not Bcl-10 in regulating CD8⁺ T-cell activation versus tolerance.

    No full text
    Elucidating the signaling events that promote T-cell tolerance versus activation provides important insights for manipulating immunity in vivo. Previous studies have suggested that the absence of PKCtheta results in the induction of anergy and that the balance between the induction of the transcription factors NFAT, AP1 and NF-kappaB plays a key role in determining whether T-cell anergy or activation is induced. Here, we examine whether Bcl-10 and specific family members of NF-kappaB act downstream of PKCtheta to alter CD8(+) T-cell activation and/or anergy. We showed that T cells from mice deficient in c-Rel but not NF-kappaB1 (p50) have increased susceptibility to the induction of anergy, similar to T cells from PKCtheta-deficient mice. Surprisingly T cells from Bcl-10-deficient mice showed a strikingly different phenotype to the PKCtheta-deficient T cells, with a severe block in TCR-mediated activation. Furthermore, we have also shown that survival signals downstream of NF-kappaB, are uncoupled from signals that mediate T-cell anergy. These results suggest that c-Rel plays a critical role downstream of PKCtheta in controlling CD8(+) T-cell anergy induction

    Loss of the signaling adaptor TRAF1 causes CD8<sup>+</sup> T cell dysregulation during human and murine chronic infection.

    No full text
    The signaling adaptor TNFR-associated factor 1 (TRAF1) is specifically lost from virus-specific CD8 T cells during the chronic phase of infection with HIV in humans or lymphocytic choriomeningitis virus (LCMV) clone 13 in mice. In contrast, TRAF1 is maintained at higher levels in virus-specific T cells of HIV controllers or after acute LCMV infection. TRAF1 expression negatively correlates with programmed death 1 expression and HIV load and knockdown of TRAF1 in CD8 T cells from viral controllers results in decreased HIV suppression ex vivo. Consistent with the desensitization of the TRAF1-binding co-stimulatory receptor 4-1BB, 4-1BBL-deficient mice have defects in viral control early, but not late, in chronic infection. TGF&beta; induces the posttranslational loss of TRAF1, whereas IL-7 restores TRAF1 levels. A combination treatment with IL-7 and agonist anti-4-1BB antibody at 3 wk after LCMV clone 13 infection expands T cells and reduces viral load in a TRAF1-dependent manner. Moreover, transfer of TRAF1(+) but not TRAF1(-) memory T cells at the chronic stage of infection reduces viral load. These findings identify TRAF1 as a potential biomarker of HIV-specific CD8 T cell fitness during the chronic phase of disease and a target for therapy
    corecore