662 research outputs found

    Finding gene-environment interactions for Phobias

    Get PDF
    Phobias are common disorders causing a great deal of suffering. Studies of gene-environment interaction (G × E) have revealed much about the complex processes underlying the development of various psychiatric disorders but have told us little about phobias. This article describes what is already known about genetic and environmental influences upon phobias and suggests how this information can be used to optimise the chances of discovering G × Es for phobias. In addition to the careful conceptualisation of new studies, it is suggested that data already collected should be re-analysed in light of increased understanding of processes influencing phobias

    The Genesis 12–19 (G1219) Study: A Twin and Sibling Study of Gene–Environment Interplay and Adolescent Development in the UK

    Get PDF
    The Genesis 12–19 (G1219) Study is an ongoing longitudinal study of a sample of UK twin pairs, non-twin sibling pairs, and their parents. G1219 was initially designed to examine the role of gene–environment interplay in adolescent depression. However, since then data have continued to be collected from both parents and their offspring into young adulthood. This has allowed for longitudinal analyses of depression and has enabled researchers to investigate multiple phenotypes and to ask questions about intermediate mechanisms. The study has primarily focused on emotional development, particularly depression and anxiety, which have been assessed at multiple levels of analysis (symptoms, cognitions, and relevant environmental experiences). G1219 has also included assessment of a broader range of psychological phenotypes ranging from antisocial behaviors and substance use to sleep difficulties, in addition to multiple aspects of the environment. DNA has also been collected. The first wave of data collection began in the year 1999 and the fifth wave of data collection will be complete before the end of 2012. In this article, we describe the sample, data collection, and measures used. We also summarize some of the key findings to date

    Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF

    Get PDF
    © 2016 BMJ Publishing Group Ltd & British Thoracic Society.Rationale Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. Methods We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. Results We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. Conclusions Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-ofmechanism trial of this agent is currently underway. Trial registration number NCT01725139, pre-clinical

    Estimating the stability of heartbeat counting in middle childhood: a twin study

    Get PDF
    There is growing interest in interoception, the perception of the body’s internal state, and its relevance for health across development. Most evidence linking interoception to health has used the heartbeat counting task. However, the temporal stability of the measure, particularly during childhood, and the etiological factors that underlie stability, remain largely unexamined. Using data from the ECHO twin sample we estimated the magnitude of genetic and environmental influences on the stability of heartbeat counting across two years (age 8-10), the longest timeframe examined. Heartbeat counting accuracy was modestly correlated across time, (r=.35), and accuracy improved with age. Non-shared environmental factors accounted for the most variance at both time points and were the main contributors to temporal stability of heartbeat counting. Future research should seek to identify these non-shared environmental factors and elucidate whether this relatively modest stability reflects variability of interoception across development or unreliability of the heartbeat counting task

    Complex microwave conductivity of Na-DNA powders

    Full text link
    We report the complex microwave conductivity, σ=σ1−iσ2\sigma=\sigma_1-i\sigma_2, of Na-DNA powders, which was measured from 80 K to 300 K by using a microwave cavity perturbation technique. We found that the magnitude of σ1\sigma_1 near room temperature was much larger than the contribution of the surrounding water molecules, and that the decrease of σ1\sigma_1 with decreasing temperature was sufficiently stronger than that of the conduction of counterions. These results clearly suggest that the electrical conduction of Na-DNA is intrinsically semiconductive.Comment: 16 pages, 7 figure

    Fluctuation-Facilitated Charge Migration along DNA

    Full text link
    We propose a model Hamiltonian for charge transfer along the DNA double helix with temperature driven fluctuations in the base pair positions acting as the rate limiting factor for charge transfer between neighboring base pairs. We compare the predictions of the model with the recent work of J.K. Barton and A.H. Zewail (Proc.Natl.Acad.Sci.USA, {\bf 96}, 6014 (1999)) on the unusual two-stage charge transfer of DNA.Comment: 4 pages, 2 figure

    Interpersonal cognitive biases as genetic markers for pediatric depressive symptoms: twin data from the Emotions, Cognitions, Heredity and Outcome (ECHO) study

    Get PDF
    Childhood depressive symptoms may arise from genetic and environmental risks, which act to bias the ways in which children process emotional information. Previous studies show that several "cognitive biases" are heritable and share genetic and environmental risks with depressive symptoms. Past research suggests that many cognitive biases only reflect genetic risks for depressive symptoms from adolescence. The present study sought to identify (a) when interpersonal cognitions mature as risk factors for depressive symptoms by examining whether these factors are stable and predict symptoms across time in childhood, and (b) the extent to which interpersonal cognitions reflect inherited/environmental risks on children's depressive symptoms. Results showed that there was some stability for interpersonal cognitive biases from age 8 to 10 years (rs = .32-.43). Only the absence of positive self/other perceptions, and negative peer and mother expectations at age 8 predicted depressive symptoms at age 10 (after controlling for depressive symptoms at age 8). The absence of positive self/other perceptions shared genetic influences with depressive symptoms within and across time. Across middle to late childhood, interpersonal cognitions begin to operate as vulnerability-trait factors for depressive symptoms, gradually reflecting distal genetic risks on symptoms
    • …
    corecore