15 research outputs found

    Directed evolution of a far-red fluorescent rhodopsin

    Get PDF
    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life. A member of this protein family, Archaerhodopsin-3 (Arch) of halobacterium Halorubrum sodomense, was recently shown to function as a fluorescent indicator of membrane potential when expressed in mammalian neurons. Arch fluorescence, however, is very dim and is not optimal for applications in live-cell imaging. We used directed evolution to identify mutations that dramatically improve the absolute brightness of Arch, as confirmed biochemically and with live-cell imaging (in Escherichia coli and human embryonic kidney 293 cells). In some fluorescent Arch variants, the pK_a of the protonated Schiff-base linkage to retinal is near neutral pH, a useful feature for voltage-sensing applications. These bright Arch variants enable labeling of biological membranes in the far-red/infrared and exhibit the furthest red-shifted fluorescence emission thus far reported for a fluorescent protein (maximal excitation/emission at ∼620 nm/730 nm)

    Removal and Reconstitution of the Carotenoid Antenna of Xanthorhodopsin

    Get PDF
    Salinixanthin, a C40-carotenoid acyl glycoside, serves as a light-harvesting antenna in the retinal-based proton pump xanthorhodopsin of Salinibacter ruber. In the crystallographic structure of this protein, the conjugated chain of salinixanthin is located at the protein–lipid boundary and interacts with residues of helices E and F. Its ring, with a 4-keto group, is rotated relative to the plane of the π-system of the carotenoid polyene chain and immobilized in a binding site near the β-ionone retinal ring. We show here that the carotenoid can be removed by oxidation with ammonium persulfate, with little effect on the other chromophore, retinal. The characteristic CD bands attributed to bound salinixanthin are now absent. The kinetics of the photocycle is only slightly perturbed, showing a 1.5-fold decrease in the overall turnover rate. The carotenoid-free protein can be reconstituted with salinixanthin extracted from the cell membrane of S. ruber. Reconstitution is accompanied by restoration of the characteristic vibronic structure of the absorption spectrum of the antenna carotenoid, its chirality, and the excited-state energy transfer to the retinal. Minor modification of salinixanthin, by reducing the carbonyl C=O double bond in the ring to a C-OH, suppresses its binding to the protein and eliminates the antenna function. This indicates that the presence of the 4-keto group is critical for carotenoid binding and efficient energy transfer

    Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle.

    No full text
    A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na(+). The absorption spectrum of GLR is insensitive to Na(+) at concentrations of ≤3 M. However, very low concentrations of Na(+) cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a "Na(+)-independent" to a "Na(+)-dependent" photocycle (or photocycle branch) at ∼60 μM Na(+). The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na(+) concentration. This suggests that a high-affinity Na(+) binding site is created transiently after photoexcitation, and entry of Na(+) from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na(+) is needed for switching the reaction path at lower pH. The data suggest therefore competition between H(+) and Na(+) to determine the two alternative pathways. The idea that a Na(+) binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na(+) binds without photoexcitation. Binding of Na(+) to the mutant shifts the chromophore maximum to the red like that of H(+), which occurs in the photocycle of the wild type

    Mutation of a Surface Residue, Lysine-129, Reverses the Order of Proton Release and Uptake in Bacteriorhodopsin; Guanidine Hydrochloride Restores It

    Get PDF
    K129 is a residue located in the extracellular loop connecting transmembrane helices D and E of bacteriorhodopsin. Replacement of K129 with a histidine alters the pK(a)'s of two key residues in the proton transport pathway, D85, and the proton release group (probably E204); the resulting pigment has properties that differ markedly from the wild type. 1) In the unphotolyzed state of the K129H mutant, the pK(a) of D85 is 5.1 ± 0.1 in 150 mM KCl (compared to ∼2.6 in the wild-type bacteriorhodopsin), whereas the unphotolyzed-state pK(a) of E204 decreases to 8.1 ± 0.1 (from ∼9.5 in the wild-type pigment). 2) The pK(a) of E204 in the M state is 7.0 ± 0.1 in K129H, compared to ∼5.8 in the wild-type pigment. 3) As a result of the change in the pK(a) of E204 in M, the order of light-induced proton release and uptake exhibits a dependence on pH in K129H differing from that of the wild type: at neutral pH and moderate salt concentrations (150 mM KCl), light-induced proton uptake precedes proton release, whereas it follows proton release at higher pH. This pumping behavior is similar to that seen in a related bacterial rhodopsin, archaerhodopsin-1, which has a histidine in the position analogous to K129. 4) At alkaline pH, a substantial fraction of all-trans K129H pigment (∼30%) undergoes a conversion into a shorter wavelength species, P480, with pK(a) ≈ 8.1, close to the pK(a) of E204. 5) Guanidine hydrochloride lowers the pK(a)'s of D85 and E204 in the ground state and the pK(a) of E204 in the M intermediate, and restores the normal order of proton release before uptake at neutral pH. 6) In the K129H mutant the coupling between D85 and E204 is weaker than in wild-type bacteriorhodopsin. In the unphotolyzed pigment, the change in the pK(a)'s of either residue when the other changes its protonation state is only 1.5 units compared to 4.9 units in wild-type bacteriorhodopsin. In the M state of photolyzed K129H pigment, the corresponding change is 1 unit, compared to 3.7 units in the wild-type pigment. We suggest that K129 may be involved in stabilizing the hydrogen bonding network that couples E204 and D85. Substitution of K129 with a histidine residue causes structural changes that alter this coupling and affect the pK(a)'s of E204 and D85
    corecore