10 research outputs found

    Ultra-Hypofractionation for Whole-Breast Irradiation in Early Breast Cancer: Interim Analysis of a Prospective Study

    Get PDF
    We report on the early clinical outcomes of a prospective series of early breast cancer (EBC) patients treated with ultra-hypofractionated post-operative whole-breast irradiation (WBI) after breast-conserving surgery (BCS) and axillary management. Primary endpoints were patient's compliance and acute toxicity. Secondary endpoints included physician-rated cosmesis and ipsilateral breast tumour recurrence (IBTR). Acute toxicity was evaluated at the end of WBI, 3 weeks and 6 months thereafter, according to the Common Terminology Criteria for Adverse Events (v. 5.0). Patients were treated between September 2021 and May 2022. The treatment schedule for WBI consisted of either 26 Gy in 5 fractions over one week (standard approach) or 28.5 Gy in 5 fractions over 5 weeks (reserved to elders). Inverse planned intensity-modulated radiation therapy (IMRT) was used employing a static technique. A total of 70 patients were treated. Fifty-nine were treated with the 26 Gy/5 fr/1 w and 11 with the 28.5 Gy/5 fr/5 ws schedule. Median age was 67 and 70 in the two groups. Most of the patients had left-sided tumours (53.2%) in the 26 Gy/5 fr/1 w or right-sided lesions (63.6%) in the 28.5 Gy/5 fr/5 ws group. Most of the patients had a clinical T1N0 disease and a pathological pT1pN0(sn) after surgery. Ductal invasive carcinoma was the most frequent histology. Luminal A intrinsic subtyping was most frequent. Most of the patients underwent BCS and sentinel lymph node biopsy and adjuvant endocrine therapy. All patients completed the treatment program as planned. Maximum detected acute skin toxicities were grade 2 erythema (6.7%), grade 2 induration (4.4%), and grade 2 skin colour changes. No early IBTR was observed. Ultra-hypofractionated WBI provides favourable compliance and early clinical outcomes in EBC after BCS in a real-world setting

    Reproducibility of patient setup by surface image registration system in conformal radiotherapy of prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The reproducibility of patient setup for radiotherapy is based on various methods including external markers, X-rays with planar or computerized image acquisition, and, more recently, surface matching imaging. We analyzed the setup reproducibility of 16 patients affected by prostate cancer who underwent conformal radiotherapy with curative intent by using a surface image registration system.</p> <p>Methods</p> <p>We analyzed the setup reproducibility of 16 patients affected by prostate cancer candidates for conformal radiotherapy by using a surface image registration system. At the initial setup, EPID images were compared with DRRs and a reference 3D surface image was obtained by the AlignRT system (Vision RT, London, UK). Surface images were acquired prior to every subsequent setup procedure. EPID acquisition was repeated when errors > 5 mm were reported.</p> <p>Results</p> <p>The mean random and systematic errors were 1.2 ± 2.3 mm and 0.3 ± 3.0 mm along the X axis, 0.0 ± 1.4 mm and 0.5 ± 2.0 mm along the Y axis, and 2.0 ± 1.8 mm and -0.7 ± 2.4 mm along the Z axis respectively. The positioning error detected by AlignRT along the 3 axes X, Y, and Z exceeded the value of 5 mm in 14.1%, 2.0%, and 5.1% measurements and the value of 3 mm in 36.9%, 13.6% and 27.8% measurements, respectively. Correlation factors calculated by linear regression between the errors measured by AlignRT and EPID ranged from 0.77 to 0.92 with a mean of 0.85 and SD of 0.13. The setup measurements by surface imaging are highly reproducible and correlate with the setup errors detected by EPID.</p> <p>Conclusion</p> <p>Surface image registration system appears to be a simple, fast, non-invasive, and reproducible method to analyze the set-up alignment in 3DCRT of prostate cancer patients.</p

    FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    Get PDF
    Background: FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Methods: Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. Results: PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 7 10-4) and CT-CTV (p = 2.9 7 10-4). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 7 10-5) and CT-CTV (p = 6 7 10-5). Conclusions: FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

    Ce doped SiO<sub>2</sub> optical fibers for remote radiation sensing and measurement

    No full text
    Scintillating materials, able to efficiently operate the conversion of energy absorbed in the form of ionizing radiation into light in the visible UV interval, are presently used in a wide class of applications as medical imaging, industrial inspection, security controls and high energy physics detector. In the last few years we studied and developed a new radiation sensor based on silica-glass fiber-optic technology. In its simplest configuration such device is composed by a short portion (about 10 mm) of scintillating fiber coupled to a photomultiplier by a suitably long passive silica fiber.At the early stage of its market introduction it is the smallest radiation sensor, also with respect to MOSFET and diode technology and it appears to be the ideal choice for in vivo measurements in medical field or remote sensing

    Characterization of phenolic solid state pellets for ESR dosimetry with radio-therapeutic photon and electron beams

    Get PDF
    IIntroduction Among the various dosimetric techniques used for characterizing the radiation beams used in radiation therapy, the electron spin resonance (ESR) arouses increasing interest for applications in various therapy procedures. In this work we report the ESR investigation of particular phenol compound (IRGANOX 1076) exposed to clinical photon and electron beams (Gallo et al., 2017). Methods Phenol (IRGANOX 1076 - Sigma Aldrich) pellets were produced also with paraffin (10% by weight). Phenol pellets were exposed to clinical photon and electron beams at various energies produced by a linear accelerator (LINAC) Siemens Primus (Siemens Medical Systems, CA, USA) installed at the Radiotherapy Department of A.R.N.A.S. \u2013 Hospital Civico-Di Cristina-Benfratelli (Palermo) with absorbed doses ranging between 0 and 13 Gy. ESR measurements were performed through a X band Spectrometer. Readout parameters were optimized to maximise the signal without excessive spectrum distortions. Results Basic dosimetric properties of phenolic dosimeters, such as reproducibility, dose-response, sensitivity,linearity and dose rate dependence were investigated. A satisfactory intra-batch reproducibility of the ESR signal of the manufactured dosimeters was obtained. The analysis of the ESR signal as function of absorbed dose highlights that the response of this material is linear in the dose range investigated (1-13 Gy) and is independent of the beam energy. The presence of an intrinsic background signal limits the minimum detectable dose to a value of approximately 0.6 Gy. Reliable and accurate assessment of the dose was achieved, independently of the dose rate. The dosimeters were tested by measuring the depth dose profile of a 6 MV photon beam. Conclusion Such characteristics, together with the fact that IRGANOX 1076\uae is almost tissue-equivalent, and the stability of the ESR signal, make these dosimeters promising materials for ESR dosimetric applications in radiotherapy

    Characterization of phenolic pellets for ESR dosimetry in photon beam radiotherapy

    No full text
    This work deals with the dosimetric features of a particular phenolic compound (IRGANOX 1076\uae) for dosimetry of clinical photon beams by using electron spin resonance (ESR) spectroscopy. After the optimization of the ESR readout parameters (namely modulation amplitude and microwave power) to maximise the signal without excessive spectrum distortions, basic dosimetric properties of laboratory-made phenolic dosimeters in pellet form, such as reproducibility, dose\u2013response, sensitivity, linearity and dose rate dependence were investigated. The dosimeters were tested by measuring the depth dose profile of a 6 MV photon beam. A satisfactory intra-batch reproducibility of the ESR signal of the manufactured dosimeters was obtained. The ESR signal proved to increase linearly with increasing dose in the investigated dose range 1\u201313 Gy. The presence of an intrinsic background signal limits the minimum detectable dose to a value of approximately 0.6 Gy. Reliable and accurate assessment of the dose was achieved, independently of the dose rate. Such characteristics, together with the fact that IRGANOX 1076\uae is almost tissue-equivalent, and the stability of the ESR signal, make these dosimeters promising materials for ESR dosimetric applications in radiotherapy

    Acceptance Test of a Commercially Available Software for Automatic Image Registration of Computed Tomography (CT), Magnetic Resonance Imaging (MRI) And 99mTc-methoxyisobutylisonitrile (MIBI) Single-Photon Emission Computed Tomography (SPECT) Brain Images

    No full text
    This note describes a method to characterize the performances of image fusion software (Syntegra) with respect to accuracy and robustness. Computed tomography (CT), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) studies were acquired from two phantoms and 10 patients. Image registration was performed independently by two couples composed of one radiotherapist and one physicist by means of superposition of anatomic landmarks. Each couple performed jointly and saved the registration. The two solutions were averaged to obtain the gold standard registration. A new set of estimators was defined to identify translation and rotation errors in the coordinate axes, independently from point position in image field of view (FOV). Algorithms evaluated were local correlation (LC) for CT-MRI, normalized mutual information (MI) for CT-MRI, and CT-SPECT registrations. To evaluate accuracy, estimator values were compared to limiting values for the algorithms employed, both in phantoms and in patients. To evaluate robustness, different alignments between images taken from a sample patient were produced and registration errors determined. LC algorithm resulted accurate in CT-MRI registrations in phantoms, but exceeded limiting values in 3 of 10 patients. MI algorithm resulted accurate in CT-MRI and CT-SPECT registrations in phantoms; limiting values were exceeded in one case in CT-MRI and never reached in CT-SPECT registrations. Thus, the evaluation of robustness was restricted to the algorithm of MI both for CT-MRI and CT-SPECT registrations. The algorithm of MI proved to be robust: limiting values were not exceeded with translation perturbations up to 2.5 cm, rotation perturbations up to 10° and roto-translational perturbation up to 3 cm and 5°
    corecore