44 research outputs found

    The emerging role of neutrophils in neurodegeneration

    Get PDF
    Neutrophils are the first line of defense in the innate immune system, helping to maintain tissue homeostasis as well as eliminating pathogens and self-components. The traditional view of neutrophils as simple phagocytes has been revised over the last decade as new research reveals their unappreciated complexity. Neutrophils are phenotypically and functionally heterogeneous, allowing them to act as modulators of both inflammation and immune responses. During acute inflammation, neutrophils perform a variety of beneficial effector functions, but when inflammation is induced by injury (sterile inflammation) the benefits of neutrophils in tissue repair are more controversial. In several pathological conditions, including cancer and autoimmune diseases, neutrophils can trigger harmful tissue damage. Interestingly, neutrophils are also key players in neuroinflammatory disorders, during which they transmigrate in the central nervous system, acquire a toxic phenotype, home in on neurons, and release harmful molecules that compromise neuronal functions. In this review, we discuss recent data that redefine the cell biology and phenotype of neutrophils, focusing on the role of these cells in multiple sclerosis and Alzheimer's disease, both of which feature strong neuroinflammatory components

    Editorial: Neurodegenerative Diseases: Looking Beyond the Boundaries of the Brain

    Get PDF
    Neurodegenerative Diseases: Looking Beyond the Boundaries of the Brai

    In vitro Models of Neurodegenerative Diseases

    Get PDF
    Neurodegenerative diseases are progressive degenerative conditions characterized by the functional deterioration and ultimate loss of neurons. These incurable and debilitating diseases affect millions of people worldwide, and therefore represent a major global health challenge with severe implications for individuals and society. Recently, several neuroprotective drugs have failed in human clinical trials despite promising pre-clinical data, suggesting that conventional cell cultures and animal models cannot precisely replicate human pathophysiology. To bridge the gap between animal and human studies, three-dimensional cell culture models have been developed from human or animal cells, allowing the effects of new therapies to be predicted more accurately by closely replicating some aspects of the brain environment, mimicking neuronal and glial cell interactions, and incorporating the effects of blood flow. In this review, we discuss the relative merits of different cerebral models, from traditional cell cultures to the latest high-throughput three-dimensional systems. We discuss their advantages and disadvantages as well as their potential to investigate the complex mechanisms of human neurodegenerative diseases. We focus on in vitro models of the most frequent age-related neurodegenerative disorders, such as Parkinson\u2019s disease, Alzheimer\u2019s disease and prion disease, and on multiple sclerosis, a chronic inflammatory neurodegenerative disease affecting young adults

    Common peripheral immunity mechanisms in multiple sclerosis and Alzheimer’s disease

    Get PDF
    Neurodegenerative diseases are closely related to inflammatory and autoimmune events, suggesting that the dysregulation of the immune system is a key pathological factor. Both multiple sclerosis (MS) and Alzheimer’s disease (AD) are characterized by infiltrating immune cells, activated microglia, astrocyte proliferation, and neuronal damage. Moreover, MS and AD share a common pro-inflammatory signature, characterized by peripheral leukocyte activation and transmigration to the central nervous system (CNS). MS and AD are both characterized by the accumulation of activated neutrophils in the blood, leading to progressive impairment of the blood–brain barrier. Having migrated to the CNS during the early phases of MS and AD, neutrophils promote local inflammation that contributes to pathogenesis and clinical progression. The role of circulating T cells inMS is well-established, whereas the contribution of adaptive immunity to AD pathogenesis and progression is a more recent discovery. Even so, blocking the transmigration of T cells to the CNS can benefit bothMS and AD patients, suggesting that common adaptive immunity mechanisms play a detrimental role in each disease. There is also growing evidence that regulatory T cells are beneficial during the initial stages of MS and AD, supporting the link between the modulatory immune compartments and these neurodegenerative disorders. The number of resting regulatory T cells declines in both diseases, indicating a common pathogenic mechanism involving the dysregulation of these cells, although their precise role in the control of neuroinflammation remains unclear. The modulation of leukocyte functions can benefit MS patients, so more insight into the role of peripheral immune cells may reveal new targets for pharmacological intervention in other neuroinflammatory and neurodegenerative diseases, including AD

    The role of neutrophils in the dysfunction of central nervous system barriers

    Get PDF
    Leukocyte migration into the central nervous system (CNS) represents a central process in the development of neurological diseases with a detrimental inflammatory component. Infiltrating neutrophils have been detected inside the brain of patients with several neuroinflammatory disorders, including stroke, multiple sclerosis and Alzheimer's disease. During inflammatory responses, these highly reactive innate immune cells can rapidly extravasate and release a plethora of pro-inflammatory and cytotoxic factors, potentially inducing significant collateral tissue damage. Indeed, several studies have shown that neutrophils promote blood-brain barrier damage and increased vascular permeability during neuroinflammatory diseases. Recent studies have shown that neutrophils migrate into the meninges and choroid plexus, suggesting these cells can also damage the blood-cerebrospinal fluid barrier (BCSFB). In this review, we discuss the emerging role of neutrophils in the dysfunction of brain barriers across different neuroinflammatory conditions and describe the molecular basis and cellular interplays involved in neutrophil-mediated injury of the CNS borders

    Alpha4 beta7 integrin controls Th17 cell trafficking in the spinal cord leptomeninges during experimental autoimmune encephalomyelitis

    Get PDF
    Th1 and Th17 cell migration into the central nervous system (CNS) is a fundamental process in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). Particularly, leptomeningeal vessels of the subarachnoid space (SAS) constitute a central route for T cell entry into the CNS during EAE. Once migrated into the SAS, T cells show an active motility behavior, which is a prerequisite for cell-cell communication, in situ reactivation and neuroinflammation. However, the molecular mechanisms selectively controlling Th1 and Th17 cell trafficking in the inflamed leptomeninges are not well understood. By using epifluorescence intravital microscopy, we obtained results showing that myelin-specific Th1 and Th17 cells have different intravascular adhesion capacity depending on the disease phase, with Th17 cells being more adhesive at disease peak. Inhibition of alpha L beta 2 integrin selectively blocked Th1 cell adhesion, but had no effect on Th17 rolling and arrest capacity during all disease phases, suggesting that distinct adhesion mechanisms control the migration of key T cell populations involved in EAE induction. Blockade of alpha 4 integrins affected myelin-specific Th1 cell rolling and arrest, but only selectively altered intravascular arrest of Th17 cells. Notably, selective alpha 4 beta 7 integrin blockade inhibited Th17 cell arrest without interfering with intravascular Th1 cell adhesion, suggesting that alpha 4 beta 7 integrin is predominantly involved in Th17 cell migration into the inflamed leptomeninges in EAE mice. Two-photon microscopy experiments showed that blockade of alpha 4 integrin chain or alpha 4 beta 7 integrin selectively inhibited the locomotion of extravasated antigen-specific Th17 cells in the SAS, but had no effect on Th1 cell intratissue dynamics, further pointing to alpha 4 beta 7 integrin as key molecule in Th17 cell trafficking during EAE development. Finally, therapeutic inhibition of alpha 4 beta 7 integrin at disease onset by intrathecal injection of a blocking antibody attenuated clinical severity and reduced neuroinflammation, further demonstrating a crucial role for alpha 4 beta 7 integrin in driving Th17 cell-mediated disease pathogenesis. Altogether, our data suggest that a better knowledge of the molecular mechanisms controlling myelin-specific Th1 and Th17 cell trafficking during EAE delevopment may help to identify new therapeutic strategies for CNS inflammatory and demyelinating diseases

    Blockade of \u3b14 integrins reduces leukocyte-endothelial interactions in cerebral vessels and improves memory in a mouse model of Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline associated with the deposition of amyloid-beta (A beta) plaques, hyperphosphorylation of tau protein, and neuronal loss. Vascular inflammation and leukocyte trafficking may contribute to AD pathogenesis, and a better understanding of these inflammation mechanisms could therefore facilitate the development of new AD therapies. Here we show that T cells extravasate in the proximity of cerebral VCAM-1(+) vessels in 3xTg-AD transgenic mice, which develop both A beta and tau pathologies. The counter-ligand of VCAM-1-alpha 4 beta 1 integrin, also known as very late antigen-4 (VLA-4) - was more abundant on circulating CD4(+) T cells and was also expressed by a significant proportion of blood CD8(+) T cells and neutrophils in AD mice. Intravital microscopy of the brain microcirculation revealed that alpha 4 integrins control leukocyte-endothelial interactions in AD mice. Therapeutic targeting of VLA-4 using antibodies that specifically block alpha 4 integrins improved the memory of 3xTg-AD mice compared to an isotype control. These antibodies also reduced neuropathological hallmarks of AD, including microgliosis, A beta load and tau hyperphosphorylation. Our results demonstrate that alpha 4 integrin-dependent leukocyte trafficking promotes cognitive impairment and AD neuropathology, suggesting that the blockade of alpha 4 integrins may offer a new therapeutic strategy in AD

    LFA-1 Controls Th1 and Th17 Motility Behavior in the Inflamed Central Nervous System

    Get PDF
    Leukocyte trafficking is a key event during autoimmune and inflammatory responses. The subarachnoid space (SAS) and cerebrospinal fluid are major routes for the migration of encephalitogenic T cells into the central nervous system (CNS) during experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis, and are sites of T cell activation before the invasion of CNS parenchyma. In particular, autoreactive Th1 and Th17 cell trafficking and reactivation in the CNS are required for the pathogenesis of EAE. However, the molecular mechanisms controlling T cell dynamics during EAE are unclear. We used two-photon laser microscopy to show that autoreactive Th1 and Th17 cells display distinct motility behavior within the SAS in the spinal cords of mice immunized with the myelin oligodendrocyte glycoprotein peptide MOG(35-55). Th1 cells showed a strong directional bias at the disease peak, moving in a straight line and covering long distances, whereas Th17 cells exhibited more constrained motility. The dynamics of both Th1 and Th17 cells were strongly affected by blocking the integrin LFA-1, which interfered with the deformability and biomechanics of Th1 but not Th17 cells. The intrathecal injection of a blocking anti-LFA-1 antibody at the onset of disease significantly inhibited EAE progression and also strongly reduced neuro-inflammation in the immunized mice. Our results show that LFA-1 plays a pivotal role in T cell motility during EAE and suggest that interfering with the molecular mechanisms controlling T cell motility can help to reduce the pathogenic potential of autoreactive lymphocytes

    Coenzyme A fueling with pantethine limits autoreactive T cell pathogenicity in experimental neuroinflammation

    Get PDF
    Background: Immune cell metabolism governs the outcome of immune responses and contributes to the development of autoimmunity by controlling lymphocyte pathogenic potential. In this study, we evaluated the metabolic profile of myelin-specific murine encephalitogenic T cells, to identify novel therapeutic targets for autoimmune neuroinflammation. Methods: We performed metabolomics analysis on actively-proliferating encephalitogenic T cells to study their overall metabolic profile in comparison to resting T cells. Metabolomics, phosphoproteomics, in vitro functional assays, and in vivo studies in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), were then implemented to evaluate the effect of metabolic targeting on autoreactive T cell pathogenicity. Finally, we confirmed the translational potential of our targeting approach in human pro-inflammatory T helper cell subsets and in T cells from MS patients. Results: We found that autoreactive encephalitogenic T cells display an altered coenzyme A (CoA) synthesis pathway, compared to resting T cells. CoA fueling with the CoA precursor pantethine (PTTH) affected essential immune-related processes of myelin-specific T cells, such as cell proliferation, cytokine production, and cell adhesion, both in vitro and in vivo. Accordingly, pre-clinical treatment with PTTH before disease onset inhibited the development of EAE by limiting T cell pro-inflammatory potential in vivo. Importantly, PTTH also significantly ameliorated the disease course when administered after disease onset in a therapeutic setting. Finally, PTTH reduced pro-inflammatory cytokine production by human T helper 1 (Th1) and Th17 cells and by T cells from MS patients, confirming its translational potential. Conclusion: Our data demonstrate that CoA fueling with PTTH in pro-inflammatory and autoreactive T cells may represent a novel therapeutic approach for the treatment of autoimmune neuroinflammation

    An isoform of the giant protein titin is a master regulator of human T lymphocyte trafficking

    Get PDF
    Response to multiple microenvironmental cues and resilience to mechanical stress are essential features of trafficking leukocytes. Here, we describe unexpected role of titin (TTN), the largest protein encoded by the human genome, in the regulation of mechanisms of lymphocyte trafficking. Human T and B lymphocytes express five TTN isoforms, exhibiting cell-specific expression, distinct localization to plasma membrane microdomains, and different distribution to cytosolic versus nuclear compartments. In T lymphocytes, the LTTN1 isoform governs the morphogenesis of plasma membrane microvilli independently of ERM protein phosphorylation status, thus allowing selectin-mediated capturing and rolling adhesions. Likewise, LTTN1 controls chemokine-triggered integrin activation. Accordingly, LTTN1 mediates rho and rap small GTPases activation, but not actin polymerization. In contrast, chemotaxis is facilitated by LTTN1 degradation. Finally, LTTN1 controls resilience to passive cell deformation and ensures T lymphocyte survival in the blood stream. LTTN1 is, thus, a critical and versatile housekeeping regulator of T lymphocyte trafficking
    corecore