321 research outputs found

    Effects of DC-Field Excitation on the Incremental Inductance of a Variable Flux Reluctance Machine

    Get PDF
    This paper presents a method for the computation of the incremental inductances in a 12/10 variable flux reluctance machine using the hybrid analytical modeling coupled with a fixed-point nonlinear solver. The variation of incremental and apparent inductance with respect to the dc-field excitation is investigated for both zero and non-zero ac-field excitations. The results show that the difference between both inductance values is not negligible after 25 A/mm2 dc-current density for the investigated benchmark without the ac field. Moreover, when a non-zero ac field is introduced in addition to the dc-field, the apparent inductance becomes misleading not only under magnetic saturation but also under low excitation in the linear region of the saturation curve. The results obtained with the proposed nonlinear hybrid model are compared with the finite element method in terms of magnetic flux density distribution and incremental inductance value. The root-mean-square discrepancy of magnetic flux density distribution is found to be 37.6 mT. Furthermore, the discrepancy between incremental inductance results of the proposed method and the finite element model is calculated as 1.43%, while the proposed approach requires less post-processing and necessitates ten times less number of degrees-of-freedom

    Convergence analysis of the fixed-point method with the hybrid analytical modeling for 2-D nonlinear magnetostatic problems

    Get PDF
    This paper presents the convergence analysis of the fixed-point method (FPM) to model the nonlinear magnetic characteristics of a 2-D magnetostatic problem. In this study, FPM is used as the iterative nonlinear solver of the hybrid analytical modeling (HAM) technique for the accurate computation of the magnetic field distribution. The benchmark consists of a stator with excitation windings, an airgap, and a slotless mover. The relative errors between two successive iterations are calculated using different error estimators: the attraction force on the mover, the Fourier coefficients defined in the airgap, the magnetic flux density, and the magnetic scalar potential distributions. The effect of the number of mesh elements and harmonics on the accuracy and computational cost of the model is investigated for different levels of magnetic saturation. It is observed that the maximum rate of change in the relative difference of attraction force during the iterations is found to be 0.52 under the magnetic saturation. In addition, the absolute error of the attraction force between the developed hybrid model with FPM and the finite element method (FEM) is achieved to be 0.18%, while HAM has approximately three times less number of degrees-of-freedom compared to FEM

    Discovering Sparse Hysteresis Models: A Data-driven Study for Piezoelectric Materials and Perspectives on Magnetic Hysteresis

    Full text link
    This article presents an approach for modelling hysteresis in piezoelectric materials that leverages recent advancements in machine learning, particularly in sparse-regression techniques. While sparse regression has previously been used to model various scientific and engineering phenomena, its application to nonlinear hysteresis modelling in piezoelectric materials has yet to be explored. The study employs the least-squares algorithm with sequential threshold to model the dynamic system responsible for hysteresis, resulting in a concise model that accurately predicts hysteresis for both simulated and experimental piezoelectric material data. Additionally, insights are provided on sparse white-box modelling of hysteresis for magnetic materials taking non-oriented electrical steel as an example. The presented approach is compared to traditional regression-based and neural network methods, demonstrating its efficiency and robustness

    A Comparative Study of Finite Element Method and Hybrid Finite Element Method–Spectral Element Method Approaches Applied to Medium-Frequency Transformers with Foil Windings

    Get PDF
    This study aims to improve the computational efficiency of the frequency domain analysis of medium-frequency transformers (MFTs) with the presence of large clearance distances and fine foil windings. The winding loss and magnetic energy in MFTs in the medium-frequency range are calculated utilizing a finite element method (FEM) using common triangular and alternative rectilinear mesh elements. Additionally, in order to improve the computational efficiency of the calculations, a spectral element method (SEM) is coupled with a FEM, thus creating a hybrid FEM–SEM formulation. In such a hybrid approach, the FEM is used to calculate the current density distribution in the two-dimensional (2D) cross-section of the foil conductors to achieve reliable accuracy, and the SEM is adopted in the nonconducting clearance distances of the winding window to reduce the system of equations. The comparative analysis of the calculated resistance and reactance of the under-study models showed that the FEM with rectilinear mesh elements and the FEM–SEM model outperformed the FEM with triangular mesh elements in terms of accuracy and computational cost. The hybrid FEM–SEM model enables a reduced system of equations for modeling the electromagnetic behavior of MFTs. This research provides valuable insights into both the computational approaches and meshing challenges in the analysis of MFTs and offers a foundation for future research on the design and optimization of MFT

    Three-Dimensional Magnetic Field Modeling of a Cylindrical Halbach Array

    Full text link

    Analytical Calculation of the Force Between a Rectangular Coil and a Cuboidal Permanent Magnet

    Full text link
    • …
    corecore