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Effects of DC-Field Excitation on the Incremental Inductance
of a Variable Flux Reluctance Machine

D. Ceylan , L. A. J. Friedrich , K. O. Boynov, and E. A. Lomonova

Department of Electrical Engineering, Eindhoven University of Technology, 5612 Eindhoven, The Netherlands

This article presents a method for the computation of the incremental inductances in a 12/10 variable flux reluctance
machine (VFRM) using the hybrid analytical modeling coupled with a fixed-point nonlinear solver. The variation of incremental and
apparent inductance with respect to the dc-field excitation is investigated for both zero and non-zero ac-field excitations. The results
show that the difference between both inductance values is not negligible after 25 A/mm2 dc-current density for the investigated
benchmark without the ac field. Moreover, when a non-zero ac field is introduced in addition to the dc-field, the apparent inductance
becomes misleading not only under magnetic saturation but also under low excitation in the linear region of the saturation curve.
The results obtained with the proposed nonlinear hybrid model are compared with the finite element method in terms of magnetic
flux density distribution and incremental inductance value. The root-mean-square discrepancy of magnetic flux density distribution
is found to be 37.6 mT. Furthermore, the discrepancy between incremental inductance results of the proposed method and the finite
element model is calculated as 1.43%, while the proposed approach requires less post-processing and necessitates ten times less
number of degrees-of-freedom.

Index Terms— Fixed-point method (FPM), hybrid analytical modeling (HAM), incremental inductance, variable flux reluctance
machines (VFRMs).

I. INTRODUCTION

THE accurate calculation of winding inductance in elec-
trical machines is critical to achieve the optimum design

and control. One of the common mistakes done by engineers
in the field of electromechanics is using apparent induc-
tance instead of incremental under the magnetic saturation.
While the apparent inductance is defined as the ratio of the
flux linkage to the excitation current, the incremental induc-
tance is a partial derivative of the flux linkage with respect
to the excitation current [1]. Wang and Lin [2] proposed
an analytical method to estimate the incremental inductance
of a permanent magnet (PM) machine. An experimental
procedure to obtain the incremental inductance profile of
a switch reluctance machine is presented in [3]. Due to
the fact that the difference between these two inductance
values increases with magnetic saturation of the iron material,
the accurate calculation of incremental inductance becomes
critical for electrical machines operating under the magnetic
saturation such as variable flux reluctance machine (VFRM).
VFRM has both dc- and ac-field windings in its stator, while
it exhibits a doubly salient rotor and stator structure as
explained in [4]. The cost of VFRM is relatively low because
of its PM-free structure. In addition, VFRM has improved
flux weakening capability to increase the efficiency at high
speed [5]. Besides, since the identical field windings on each
pole provide identical flux path for each phase, VFRM has
more sinusoidal flux linkage and back electromotive force
under heavy magnetic saturation compared to the other salient
machines such as doubly fed doubly salient and doubly
salient PM machines as discussed in [6]. In order to use the
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advantage of having sinusoidal waveforms, VFRM performs
under saturation. Therefore, the incremental inductance of a
VFRM deviates from its apparent inductance during the exci-
tation which makes the accurate calculation of the incremental
inductance critical.

The finite element method (FEM) is the most commonly
used method to simulate electrical machines including non-
linear properties since there exist several commercial pack-
ages able to automate numerical modeling and computation.
Incremental analysis of a transformer is presented in [7] using
FEM. However, the calculation of incremental inductance with
FEM requires extra post-processing to obtain the derivative of
flux linkage with respect to the excitation current. The require-
ment of post-processing and a large number of mesh elements
in the airgap are two main factors increasing the computational
cost of incremental inductance calculation using FEM.

The hybrid analytical modeling (HAM) technique is used
to calculate the magnetic field distribution of a VFRM in
this study. As explained in [8], HAM uses magnetic equiv-
alent circuit (MEC) theory in both stator and rotor. Unlike
FEM, the magnetic field in the airgap is modeled analytically
using Fourier analysis (FA) in HAM. In addition, HAM
can use a coarser mesh than FEM in the stator and rotor
because MEC is an integral method, while FEM is differential.
Therefore, HAM with mesh-free airgap and integral MEC is
advantageous compared to FEM in terms of computational
time [9]. Moreover, the nonlinear magnetic properties of iron
material are included using the fixed-point method (FPM).
As discussed in [10], FPM locally linearizes the nonlinear
saturation curve using tangent lines. In order to model the
magnetic saturation, an additional source of magneto-motive
force (MMF) is introduced as a function of intercept and
slope of tangent lines, which are called remanent flux and
incremental permeability, respectively. Since the saturation-
related MMF source is decoupled from other current or
PM sources, incremental inductance can be calculated without
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Fig. 1. 2-D benchmark of a 12/10 variable flux reluctance machine (VFRM)
machine.

TABLE I

BENCHMARK DIMENSIONS

computing the derivative of flux linkage as discussed in [11].
Hence, the proposed approach requires less computational
effort to calculate incremental inductance than FEM.

In this article, effects of dc-field excitation on the incremen-
tal inductance of a VFRM is analyzed using HAM coupled
with FPM nonlinear solver. The difference between apparent
and incremental inductances is observed for zero and nonzero
ac-field excitation. The results are compared with FEM results.

II. BENCHMARK

A 12/10 VFRM given in Fig. 1 is selected as benchmark.
It has concentrated ac- and dc-field windings in the stator.
In the given winding configuration, each phase has four series-
connected windings. Dimensions of the benchmark are given
in Table I. While the stack length of the benchmark in
z-direction is 0.2 m, the airgap is selected as 1 mm. The soft-
magnetic material is selected as Cogent M800, which exhibits
a nonlinear B–H characteristic.

III. MODELING METHOD

The apparent and incremental inductances of the ana-
lyzed benchmark are calculated using two different modeling
methods: FEM and HAM. HAM uses a strong coupling
between MEC and FA techniques to calculate magnetic field
distribution. The model parameters of HAM and FEM are
selected implementing a sensitivity analysis for each of them.
In the stator and rotor of HAM, 8600 MEC elements are
used in total, each of which has four annular sector-shaped
reluctance elements in both θ - and r -directions. The number
of harmonics included in the FA of the airgap flux is 50,
which results in 200 Fourier coefficients. A Dirichlet boundary
condition is introduced at the outer radius of the stator for

Fig. 2. Different incremental computations in FEM and HAM. (a) FEM.
(b) HAM.

both models. Moreover, quadratic triangular mesh elements
are used in FEM. The number of layers used in the airgap is
selected as four which results in totally 42 700 elements in the
benchmark. Consequently, the number of degrees-of-freedom
of the hybrid analytical model is 8800, while the finite element
model has 85 601 degrees-of-freedom.

Since the implementation of HAM is explained in
[8] and [12] in detail, it is not discussed in this article.
Moreover, the nonlinear solver of the hybrid analytical model
is developed using FPM. This method linearizes the nonlinear
saturation curve using tangent lines for each mesh element
in the reluctance network of the stator and rotor. After the
linearization, tangent lines are expressed as

H = B

μ0μr
− Br

μ0μr
(1)

where H is the magnetic field strength, B is the magnetic
flux density, μ0 is the permeability of free-space, μr is the
incremental relative permeability which is defined as the slope
of the tangent line, and Br is the remanent flux density
which is the intercept of the tangent line. The term with Br

in (1) is considered as the equivalent magnetization of the
soft-magnetic material, and it is included in the model as
an additional MMF source as discussed in [13]. Values of
B , μr , and Br are updated in each iteration of FPM using
the nonlinear B–H characteristics of the electrical steel and
the developed hybrid analytical model. While μr and Br are
calculated using tangent lines on the points where B results of
HAM are located, HAM takes μr and Br and returns a new
B-field distribution. In addition, μr and Br of tangent lines
are used in the reluctance and MMF source distributions of
HAM. For the convergence criterion, the relative difference
of the magnetic flux density distribution between successive
iterations is used. If the relative difference

ε
(i)
B = ||B(i) − B(i−1)||

||B(i)|| (2)

is smaller than 0.1%, FPM stops the iteration.

IV. INDUCTANCE CALCULATION

A. Apparent Inductance

The calculation of apparent inductance, Lapp, using
FEM or HAM does not require other computations than the
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Fig. 3. Flux density distribution calculated using HAM and the difference between FEM and HAM results. (a) HAM. (b) Error.

flux linkage. It is defined as the ratio of the total flux linked
by an ac-field winding to the dc-field excitation current

Lapp = λ

Idc
= Nφ

Idc
(3)

where λ is the total flux linkage, φ is the magnetic flux, N is
the number of turns, and Idc is the dc current.

The system of equations of HAM is solved for magnetic
scalar potentials of the reluctance network defined in the stator
and the rotor, and Fourier coefficients defined in the FA in
the airgap. The magnetic flux density distributions in θ - and
r -directions, Bθ and Br , are calculated using these HAM
outputs. Then, φ in (3) is expressed as a function of Br for
winding C1 in Fig. 1

φ = ls

∫ τst

0
r Br (r, θ)dθ (4)

where the radius, r , is evaluated at the stator tooth opening.
Each winding given in Fig. 1 has its own boundaries for the
line integration in (4) depending on its position. In addition,
in HAM, the winding related MMF sources are defined in
terms of dc- and ac-current densities, Jdc and Jac. Hence, Idc
in (3) is expressed as

Idc = JdcSdc

N
(5)

where Sdc is the area of the dc-field winding on the stator slot
surface. Using (3)–(5), the expression for apparent inductance
to be used in HAM is found as

Lapp = N2ls

JdcSdc

∫
r Br (r, θ)dθ. (6)

B. Incremental Inductance

The incremental inductance, L inc, is defined as a partial
derivative of λ with respect to Idc

L inc = ∂λ

∂ Idc
= N

∂φ

∂ Idc
. (7)

The implementation of (7) with FEM is only possible in post-
processing using either continuous or discrete derivative. For
the continuous derivative, φ values calculated by FEM are

interpolated as a function of Idc which causes additional post-
processing and therefore, computational effort

Lspline
inc = N2

Sdc

∂ fφ(Jdc)

∂ Jdc
(8)

shows the calculation of incremental inductance using con-
tinuous derivative where fφ is the spline interpolant of the
magnetic flux. The discrete method approximates the partial
derivate using the central finite difference method (FDM) as
illustrated in Fig. 2(a), where J+ and J− are very close
to J . Considering Fig. 2(a), the incremental inductance can
be calculated in the post-processing of FEM using

LFDM
inc = N2

Sdc

φ+ − φ−

J+
dc − J−

dc

. (9)

However, FEM calculations are repeated two times more for
the operating current densities J+ and J− which increases the
total simulation time. Unlike FEM, FPM used in HAM does
not require an extensive post-processing for the incremental
analysis of inductance. The advantage of FPM is that MMF
sources related to magnetic saturation, Fsat, and other field
windings, Fdc, Fac, are available in HAM separately

F = Fdc + Fac + Fsat. (10)

After convergence of the FPM algorithm, the total flux linkage,
λ, and the converged values of μr and Brem for each mesh
element are found. Then, Fdc is set to zero without any change
in other sources. The resulting HAM matrix is inverted one
more time without FPM with resultant μr and Brem values
under the excitation of Fac and Fsat. The flux linkage result
of this HAM calculation is called remanent flux linkage, λrem,
which is the intercept of the tangent line given in Fig. 2(b).
After the last linear HAM calculation, incremental inductance
is obtained using

LHAM
inc = N2(φ − φrem)

JdcSdc
. (11)

In addition, it should be noted that the developed 2-D mod-
els ignore the end-windings which decreases the flux inkage.
Therefore, 2-D approximation gives relatively lower apparent
inductance values than 3-D for the same excitation current.
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Fig. 4. Effect of dc-field excitation on apparent and incremental inductances for zero ac-field excitation. (a) Phase A. (b) Phase B. (c) Phase C.

Fig. 5. Initial (a) and final (b) magnetic flux density distributions calculated
by HAM compared to the saturation curve of Cogent M800 steel.

However, this approximation affects the incremental induc-
tance less than apparent, because the flux linkage contribution
of the end-windings does not change the partial derivative of
the flux linkage with respect to the current.

V. RESULTS

The benchmark of Fig. 1 is analyzed using the developed
hybrid analytical and finite element models. A magnetostatic
analysis is performed for the rotor position given in Fig. 1
using FEM and HAM. Comsol Multiphysics software is used
for the FEM calculation. In order to verify the developed non-
linear hybrid analytical model coupled with FPM, the magnetic
flux density distribution result of HAM is compared with FEM
in Fig. 3 for 35 A/mm2 dc-current density and zero ac-current
density. Fig. 3(b) shows that the maximum local error is
located at the corners of the teeth. It is because the gradient is
ill-defined at a corner point and makes FEM calculation less
accurate. The root-mean-square error of B-field result of HAM
is calculated as 37.6 mT. Moreover, to observe the saturation
level in HAM under the same excitation, the normalized
magnetic flux density and magnetic field strength values of
each mesh element in the stator and rotor are compared with
the saturation curve of Cogent M800 steel in Fig. 5. It can
be seen that while the permeability is assigned as 1000 in
the initial stage, the final B and H results are located on the
saturation curve after FPM iterations where some of them are
in the deep saturation region.

After the verification of the developed hybrid analytical
model, ac-field excitation is kept zero while Jdc is increased

Fig. 6. Incremental inductance results of discrete (FDM) and continuous
(spline) methods used in FEM.

from zero to 50 A/mm2. The number of turns is selected as
34 for each winding considering the maximum carrying cur-
rent and American wire gauge standards. Resultant inductance
variations with respect to Jdc are presented in Fig. 4 where
the solid lines are apparent inductance, dashed lines, and dots
are incremental inductance calculated by FEM with spline
interpolation and HAM with FPM, respectively. The discrep-
ancy between two incremental results is calculated as 1.43%.
Moreover, it is shown that larger Jdc values than 25 A/mm2

result in a difference between L inc and Lapp for winding A2–4,
B2–4, and C1–3 where the magnetic flux density is higher,
as shown in Fig. 3(a). In addition, continuous and discrete
methods used to calculate L inc in the post-processing of FEM
are compared for phase C in Fig. 6. It is observed that FDM
yields numerical errors due to discrete derivation.

Effect of dc-field excitation on incremental and apparent
inductance is investigated also with the non-zero ac field. The
peak value of ac-current density is selected as 5 A/mm2.
Considering the rotor position given in Fig. 1, the current
density value of each phase is properly commutated. Fig. 7
shows that the apparent approximation becomes unrealistic
with the non-zero ac-current source. The reason is that the ac
component of flux linkage contributes to the total flux linkage
as an offset considering the total flux linkage as a function of
dc current. Moreover, the effect of saturation can be observed
on L inc after 22 A/mm2. Lastly, the variations of apparent and
incremental inductances of windings C1 and C3 are compared
with respect to Jdc for 0, 5, and 10 A/mm2 peak values of Jac
in Figs. 8 and 9.
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Fig. 7. Effect of dc-field excitation on apparent and incremental inductances for non-zero ac-field excitation. (a) Phase A. (b) Phase B. (c) Phase C.

Fig. 8. Variation of apparent inductance with respect to dc-current density
for different ac-field excitation levels.

Fig. 9. Variation of incremental inductance with respect to dc-current density
for different ac field excitation levels.

VI. CONCLUSION

The effect of dc-field excitation on the incremental and
apparent inductance is investigated using FEM and HAM. It is
shown that the proposed hybrid analytical model coupled with
fixed-point nonlinear solver is able to compute the incremental
analysis with more accuracy and less computational effort
compared to FEM. The main two reasons of that are the mesh-
free airgap of HAM and the fact that the winding and satu-
ration related MMF sources are decoupled in FPM. A VFRM
benchmark is investigated using the developed hybrid analyt-
ical model under different ac- and dc-field excitation levels.
It is observed that increasing the dc-field excitation decrea-
ses apparent and incremental mutual inductances between
ac- and dc-field windings after 25 A/mm2 for the analyzed
benchmark with non-zero ac-field due to the magnetic satura-
tion. Furthermore, the apparent inductance gives unrealistically
large values compared to the incremental inductances under
the saturation or non-zero ac-field. Also, the magnetic flux

density and inductance obtained by the proposed method
demonstrate a good agreement with FEM results. The dis-
crepancy between the incremental inductance results of the
proposed model and FEM is equal to 1.43%.
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