43 research outputs found

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Chaperon-like Activation of Serum-Inducible Tryptophanyl-tRNA Synthetase Phosphorylation through Refolding as a Tool for Analysis of Clinical Samples1

    Get PDF
    Tryptophanyl-tRNA synthetase (TrpRS) expression alters in colorectal (CRC), pancreatic (PC), and cervical (CC) cancers. Here, phosphorylation of unfolded TrpRS and its fragments is stimulated by human cancer sera (CS; n = 13) and serum of rabbit tumor induced by Rous sarcoma virus, unaffected by donor sera (NS; 11/15) and abolished by alkaline phosphatase. At 20 years of follow-up, serum-inducible TrpRS phosphorylation found years before healthy donors (3/15) diagnosed with PC, CRC, or leukemia. I have examined a specificity of serum-inducible TrpRS phosphorylation and found, surprisingly, that serine phosphorylation of unfolded TrpRS is stimulated by anti-TrpRS rabbit antisera but is unaffected by rabbit nonimmune sera and antisera to other antigens. Anti-TrpRS immunoglobulin G (IgG) inhibits phosphorylation of full-length TrpRS and stimulates phosphorylation of its 20-kDa fragment. Phosphorylation of this fragment is stimulated also by CS but not NS. 2-Mercaptoethanol and cyclic AMP exerted synergistic inhibitory effect on TrpRS phosphorylation. Anti-TrpRS sera and casein act as chaperones increasing TrpRS phosphorylation through refolding. Histone-specific protein kinase activity in CS (n = 44) and anti-TrpRS sera was lower than that in NS (n = 11), rabbit nonimmune sera and antisera to other antigens. TrpRS inhibitors, tryptamine, and tryptophanol stimulate in vivo accumulation of enzymatically inactive, nonphosphorylated, aggregated and anti-TrpRS IgG refoldable TrpRS. Phosphorylation of postsurgical tissues (n = 18) reveals TrpRS in ovarian cancer (OVC) and CC but not in normal placenta and liver. In OVC, TrpRS phosphorylation increase correlates with elevated tryptophan-dependent ATP-inorganic pyrophosphate exchange. Although not inducing cancer, TrpRS triggers signaling concomitant with cancer

    Diet-Related Metabolic Perturbations of Gut Microbial Shikimate Pathway-Tryptamine-tRNA Aminoacylation-Protein Synthesis in Human Health and Disease

    No full text
    Human gut bacterial Na(+)-transporting NADH:ubiquinone reductase (NQR) sequence is associated with Alzheimer disease (AD). Here, Alzheimer disease-associated sequence (ADAS) is further characterized in cultured spore-forming Clostridium sp . Tryptophan and NQR substrate ubiquinone have common precursor chorismate in microbial shikimate pathway. Tryptophan-derived tryptamine presents in human diet and gut microbiome. Tryptamine inhibits tryptophanyl-tRNA synthetase (TrpRS) with consequent neurodegeneration in cell and animal models. Tryptophanyl-tRNA synthetase inhibition causes protein biosynthesis impairment similar to that revealed in AD. Tryptamine-induced TrpRS gene-dose reduction is associated with TrpRS protein deficiency and cell death. In animals, tryptamine treatment results in toxicity, weight gain, and prediabetes-related hypoglycemia. Sequence analysis of gut microbiome database reveals 89% to 100% ADAS nucleotide identity in American Indian (Cheyenne and Arapaho [C&A]) Oklahomans, of which ~93% being overweight or obese and 50% self-reporting type 2 diabetes (T2D). Alzheimer disease-associated sequence occurs in 10.8% of C&A vs 1.3% of healthy American population. This observation is of considerable interest because T2D links to AD and obesity. Alzheimer disease-associated sequence prevails in gut microbiome of colorectal cancer, which linked to AD. Metabolomics revealed that tryptamine, chorismate precursor quinate, and chorismate product 4-hydroxybenzoate (ubiquinone precursor) are significantly higher, while tryptophan-containing dipeptides are lower due to tRNA aminoacylation deficiency in C&A compared with non-native Oklahoman who showed no ADAS. Thus, gut microbial tryptamine overproduction correlates with ADAS occurrence. Antibiotic and diet additives induce ADAS and tryptamine. Mitogenic/cytotoxic tryptamine cause microbial and human cell death, gut dysbiosis, and consequent disruption of host-microbe homeostasis. Present analysis of 1246 participants from 17 human gut metagenomics studies revealed ADAS in cell death diseases

    Towards an Integrative Understanding of tRNA Aminoacylation–Diet–Host–Gut Microbiome Interactions in Neurodegeneration

    No full text
    Transgenic mice used for Alzheimer’s disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNAtrp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood–brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS) and mitochondrial (WARS2) forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept

    Differential Expression of Secretory Phospholipases A2 in Normal and Malignant Prostate Cell Lines: Regulation by Cytokines, Cell Signaling Pathways, and Epigenetic Mechanisms

    No full text
    Upregulation of group IIA phospholipase A2 (sPLA2-IIA) correlates with prostate tumor progression suggesting prooncogenic properties of this protein. Here, we report data on expression of three different sPLA2 isozymes (groups IIA, V, and X) in normal (PrEC) and malignant (DU-145, PC-3, and LNCaP) human prostate cell lines. All studied cell lines constitutively expressed sPLA2-X, whereas sPLA2-V transcripts were identified only in malignant cells. In contrast, no expression of sPLA2-IIA was found in PrEC and DU-145 cells, but it was constitutively expressed in LNCaP and PC-3 cells. Expression of sPLA2-IIA is upregulated in PC-3 and in PrEC cells by IFN-γ in a signal transducer and activator of transcription-1-dependent manner, but not in LNCaP cells. Additional signaling pathways regulating sPLA2-IIA expression include cAMP/protein kinase A, p38 mitogen-activated protein kinase, protein kinase C, Rho-kinase, and mitogen-activated/extracellular response protein kinase / extracellular signal-regulated kinase. No deletions were revealed in the sPLA2-IIA gene from DU-145 cells lacking the expression of sPLA2-IIA. Reexpression of sPLA2-IIA was induced by 5-aza-2′-deoxycytidine demonstrating that DNA methylation is implicated in the regulation of sPLA2-II. Together, these data suggest that sPLA2-IIA and sPLA2-V, but not sPLA2-X, are differentially expressed in normal and malignant prostate cells under the control of proinflammatory cytokines; epigenetic mechanisms appear involved in the regulation of sPLA2-IIA expression, at least in DU-145 cells

    Geographical Distribution and Diversity of Gut Microbial NADH:Ubiquinone Oxidoreductase Sequence Associated with Alzheimer's Disease

    No full text
    Earlier we reported induction of neurotoxicity and neurodegeneration by tryptophan metabolites that link the metabolic alterations to Alzheimer's disease (AD). Tryptophan is a product of Shikimate pathway (SP). Human cells lack SP, which is found in human gut bacteria exclusively using SP to produce aromatic amino acids (AAA). This study is a first attempt toward gene-targeted analysis of human gut microbiota in AD fecal samples. The oligonucleotide primers newly-designed for this work target SP-AAA in environmental bacteria associated with human activity. Using polymerase chain reaction (PCR), we found unique gut bacterial sequence in most AD patients (18 of 20), albeit rarely in controls (1 of 13). Cloning and sequencing AD-associated PCR products (ADPP) enables identification of Na(+)-transporting NADH: Ubiquinone reductase (NQR) in Clostridium sp. The ADPP of unrelated AD patients possess near identical sequences. NQR substrate, ubiquinone is a SP product and human neuroprotectant. A deficit in ubiquinone has been determined in a number of neuromuscular and neurodegenerative disorders. Antibacterial therapy prompted an ADPP reduction in an ADPP-positive control person who was later diagnosed with AD-dementia. We explored the gut microbiome databases and uncovered a sequence similarity (up to 97%) between ADPP and some healthy individuals from different geographical locations. Importantly, our main finding of the significant difference in the gut microbial genotypes between the AD and control human populations is a breakthrough

    Mapping and molecular characterization of novel monoclonal antibodies to conformational epitopes on NH2 and COOH termini of mammalian tryptophanyl-tRNA synthetase reveal link of the epitopes to aggregation and Alzheimer's disease

    No full text
    Tryptophanyl-tRNA synthetase (TrpRS) is an interferon-induced phosphoprotein with autoantigenic and cytokine activities detected in addition to its canonical function in tRNA aminoacylation. The availability of monoclonal antibodies (mAbs) specific for TrpRS is important for development of tools for TrpRS monitoring. A molecular characterization of two mAbs raised in mice, using purified, enzymatically active bovine TrpRS as the inoculating antigen, is presented in this report. These IgG1 antibodies are specific for bovine, human and rabbit but not E. coli TrpRS. Immunoreactivity and specificity of mAbs were verified with purified recombinant hTrpRS expressed in E. coli and TrpRS-derived synthetic peptides. One of the mAbs, 9D7 is able to disaggregate fibrils formed by Ser32-Tyr50 TrpRS-peptide. Epitope mapping revealed that disaggregation ability correlates with binding of 9D7 to this peptide in ELISA and immunocytochemistry. This epitope covers a significant part of N-terminal extension that suggested to be proteolytically deleted in vivo from the full-length TrpRS whereas remaining COOH-fragment possesses a cytokine activity. For epitope mapping of mAb 6C10, the affinity selected phage-displayed peptides were used as a database for prediction of conformational discontinuous epitopes within hTrpRS crystal structure. Using computer algorithm, this epitope is attributed to COOH-terminal residues Asp409-Met425. In immunoblotting, the 6C10 mAb reacts preferably with (i) oligomer than monomer, and (ii) bound than free TrpRS forms. The hTrpRS expression was shown to correlate with growth rates of neuroblastoma and pancreatic cancer cells. Immunohistochemically both mAbs revealed extracellular plaque-like aggregates in hippocampus of Alzheimer's disease brain
    corecore