25 research outputs found

    Tuning the Morphology of Au/CdS Nanocomposites through Temperature-Controlled Reduction of Gold-Oleate Complexes

    Get PDF
    A general synthetic strategy for controlling the shape of gold domains grown onto CdS semiconductor nanocrystals is presented. The colloidal growth of Au nanoparticles is based on the temperature-controlled reduction of Au-oleate complexes on the surface of CdS and allows for precise tuning of nanoparticle diameters from 2.5 to 16 nm simply by adjusting the temperature of the growth solution, whereas the shape of Au/CdS nanocomposites can be controllably switched between matchsticks and barbells via the reaction rate. Depending on the exact morphology of Au and CdS domains, fabricated nanocomposites can undergo evaporation-induced self-assembly on a substrate either through end-to-end coupling of Au domains, resulting in the formation of one-dimensional chains or via side-by-side packing of CdS nanorods, leading to the onset of two-dimensional superlattices

    Fretting corrosion behavior of nitinol spinal rods in conjunction with titanium pedicle screws

    Get PDF
    Untypical corrosion damage including erosions combined with the build-up of titanium oxide as a corrosion product on the surface of explanted Nitinol spinal rods in the areas where it was in contact with titanium pedicle screw head is reported. It was suggested that Nitinol rods might have inferior fretting corrosion resistance compared with that made of titanium or CoCr. Fretting corrosion of Nitinol spinal rods with titanium (Ti6Al4V) pedicle screws were tested in-vitro by conducting a series of potentiostatic measurements of the peak-to-peak values of fretting corrosion current under bending in a 10% solution of calf serum in PBS. The test included Nitinol rods locked in titanium pedicle screws of different designs. Performance of commercially available titanium (Ti6Al4V) and CoCr spinal rods was also investigated for a comparison. Corrosion damage observed after the in-vitro tests was studied using SEM and EDAX analysis and was compared with patterns on Nitinol rods retrieved 12months after initial surgery. Metal ions level was measured in the test media after in-vitro experiments and in the blood and tissues of the patients who had the rods explanted. The results of this study revealed that Nitinol spinal rods locked in Ti pedicle screws are susceptible to fretting corrosion demonstrating higher fretting corrosion current compared with commercially used Ti6Al4V and CoCr rods. On the surface of Nitinol rods after in-vitro tests and on those retrieved from the patients similar corrosion patterns were observed. Improved resistance to fretting corrosion was observed with Nitinol rods in the in-vitro tests where pedicle screws were used with a stiffer locking mechanism. Since the development of the localized corrosion damage might increase the risk of premature fatigue failure of the rods and result in leaching of Ni ions, it is concluded that Nitinol rods should not be used in conjunction with Ti pedicle screws without special protection especially where the design provides a high degree of mobility to the rods

    Suppression Of The Plasmon Resonance In Au/cds Colloidal Nanocomposites

    Get PDF
    The nature of exciton-plasmon interactions in Au-tipped CdS nanorods has been investigated using femtosecond transient absorption spectroscopy. The study demonstrates that the key optoelectronic properties of composite heterostructures comprising electrically coupled metal and semiconductor domains are substantially different from those observed in systems with weak interdomain coupling. In particular, strongly coupled nanocomposites promote mixing of electronic states at semiconductor-metal domain interfaces, which causes a significant suppression of both plasmon and exciton excitations of carriers

    Heteroepitaxial Growth Of Colloidal Nanocrystals Onto Substrate Films Via Hot-injection Routes

    Get PDF
    Hot-injection synthesis of colloidal nanocrystals (NCs) in a substrate-bound form is demonstrated. We show that polycrystalline films submerged into hot organic solvents can nucleate the heteroepitaxial growth of semiconductor NCs, for which the ensuing lattice quality and size distribution are on the par with those of isolated colloidal nanoparticles. This strategy is demonstrated by growing lead chalcogenide NCs directly onto solvent-submerged TiO(2) substrates. The resulting PbX/VTiO(2) (X = S, Se, Te) nanocomposites exhibit heteroepitaxial interfaces between lead chalcogenide and oxide domains and show an efficient separation of photoinduced charges, deployable for light-harvesting applications. The extendibility of the present method to other material systems was demonstrated through the synthesis of CdS/TiO(2) and Cu(2)S/TiO(2) heterostructures, fabricated from PbS/TiO(2) composites via cation exchange. The photovoltaic performance of nanocrystal/substrate composites comprising PbS NCs was evaluated by incorporating PbS/TiO2 films Into prototype solar cells

    Improving The Catalytic Activity Of Semiconductor Nanocrystals Through Selective Domain Etching

    Get PDF
    Colloidal chemistry offers an assortment of synthetic tools for tuning the shape of semiconductor nanocrystals. While many nanocrystal architectures can be obtained directly via colloidal growth, other nanoparticle morphologies require alternative processing strategies. Here, we show that chemical etching of colloidal nanoparticles can facilitate the realization of nanocrystal shapes that are topologically inaccessible by hot-injection techniques alone. The present methodology is demonstrated by synthesizing a two-component CdSe/CdS nanoparticle dimer, constructed in a way that both CdSe and CdS semiconductor domains are exposed to the external environment. This structural morphology is highly desirable for catalytic applications as it enables both reductive and oxidative reactions to occur simultaneously on dissimilar nanoparticle surfaces. Hydrogen production tests confirmed the improved catalytic activity of CdSe/CdS dimers, which was enhanced 3-4 times upon etching treatment. We expect that the demonstrated application of etching to shaping of colloidal heteronanocrystals can become a common methodology in the synthesis of charge-separating nanocrystals, leading to advanced nanoparticles architectures for applications in areas of photocatalysis, photovoltaics, and light detection

    Linker-Free Modification Of TiO2 Nanorods With PbSe Nanocrystals

    Get PDF
    We report on a colloidal synthesis of Pbse/TiO2 heterostructures, comprising small-diameter PbSe nanocrystals epitaxially grown onto the surface of TiO2 nanorods. The deposition of lead selenide onto prefabricated TiO2 nanocrystals proceeds via formation of a thin PbSe shell that subsequently breaks into sub-2-nm islands. Additional precursor injections are then used to increase the size of PbSe nanocrystals up to 5 nm. In the case of small-size PbSe, a 2.1-ns transfer of photoinduced carriers into TiO2 domain was evidenced through quenching of the PbSe band gap emission. Overall, the present synthesis demonstrates a colloidal approach to all-inorganic modification of TiO2 surfaces with semiconductor nanocrystals, which provides a viable alternative to a more common supramolecular assembly of nanocrystal-oxide composites

    Suppressed Carrier Scattering In Cds-encapsulated Pbs Nanocrystal Films

    Get PDF
    One of the key challenges facing the realization of functional nanocrystal devices concerns the development of techniques for depositing colloidal nanocrystals into electrically coupled nanoparticle solids. This work compares several alternative strategies for the assembly of such films using an all-optical approach to the characterization of electron transport phenomena. By measuring excited carrier lifetimes in either ligand-linked or matrix-encapsulated PbS nanocrystal films containing a tunable fraction of insulating ZnS domains, we uniquely distinguish the dynamics of charge scattering on defects from other processes of exciton dissociation. The measured times are subsequently used to estimate the diffusion length and the carrier mobility for each film type within the hopping transport regime. It is demonstrated that nanocrystal films encapsulated into semiconductor matrices exhibit a lower probability of charge scattering than that of nanocrystal solids cross-linked with either 3-mercaptopropionic acid or 1,2-ethanedithiol molecular linkers. The suppression of carrier scattering in matrix-encapsulated nanocrystal films is attributed to a relatively low density of surface defects at nanocrystal/matrix interfaces

    Synthesis Of Pbs/tio2 Colloidal Heterostructures For Photovoltaic Applications

    Get PDF
    We report on heteroepitaxial growth of nearly monodisperse PbS nanocrystals onto the surface of TiO2 nanoparticles via colloidal hot-injection routes. Fabricated PbS/TiO2 nanocomposites can be dispersed in nonpolar solvents, which enables an easy solution processing of these materials into mesoporous films for use as light-absorbing layers in nanocrystal-sensitized solar cells. High-temperature deposition of the sensitizer material allows controlling both the size and the number of PbS domains grown onto TiO2 nanoparticles, whereby providing synthetic means for tuning the absorbance spectrum of PbS/TiO2 nanocomposites and simultaneously enhancing their photocatalytic response in the visible and near-infrared. Compared with conventional ionic bath deposition of PbS semiconductors onto TiO2, the reported method results in an improved nanocrystal quality and narrower distribution of PbS sizes; meanwhile, the use of hot-temperature deposition of PbS (T = 180 degrees C) promotes the formation of near-epitaxial relationships between PbS and TiO2 domains, leading to fewer interfacial defects. The photovoltaic response of pyridine-treated PbS/TiO2 nanocomposites was investigated using a two-electrode cell filled with polysulfide electrolyte. The measured photocurrent compared favorably to that of PbS/TiO2 electrodes fabricated via chemical bath deposition

    Enhanced Lifetime Of Excitons In Nonepitaxial Au/cds Core/shell Nanocrystals

    Get PDF
    The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a backward charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (tau approximate to 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase

    Synthesis and Applications of Heterostructured Semiconductor Nanocrystals.

    No full text
    Semiconductor nanocrystals (NCs) have been of great interest to researchers for several decades due to their unique optoelectronic properties. These nanoparticles are widely used for a variety of different applications. However, there are many unresolved issues that lower the efficiency and/or stability of devices which incorporate these NCs. Our research is dedicated to addressing these issues by identifying potential problems and resolving them, improving existing systems, generating new synthetic strategies, and/or building new devices. The general strategies for the synthesis of different nanocrystals were established in this work, one of which is the colloidal growth of gold domains onto CdS semiconductor nanocrystals. Control of shape and size was achieved simply by adjusting the temperature and the time of the reaction. Depending on the exact morphology of Au and CdS domains, fabricated nano-composites can undergo evaporation-induced self-assembly onto a substrate, which is very useful for building devices. CdS/Au heterostructures can assemble in two different ways: through end-to-end coupling of Au domains, resulting in the formation of one-dimensional chains; and via side-by-side packing of CdS nanorods, leading to the onset of two-dimensional superlattices. We investigated the nature of exciton-plasmon interactions in Au-tipped CdS nanorods using femtosecond transient absorption spectroscopy. The study demonstrated that the key optoelectronic properties of electrically coupled metal and semiconductor domains are significantly different from those observed in systems with weak inter-domain coupling. In particular, strongly-coupled nanocomposites promote mixing of electronic states at semiconductor-metal domain interfaces, which causes a significant suppression of both plasmon and exciton carrier excitations. Colloidal QDs are starting to replace organic molecules in many different applications, such as organic light emmiting diods (OLEDs), due to their light emmision tunability. We reported a general strategy for the assembly of all-inorganic light-emitting nanocrystal films with an emission quantum yield in the 30-52% range. Our methodology relies on solution-processing of CdSe nanocrystals into a crystalline matrix of a wide band gap semiconductor (CdS, ZnS). As a result, we replace original organic ligands on nanocrystal surfaces with an inorganic medium which efficiently preserves the quantum confinement of electrical charges in CdSe NCs. In addition to strong emission, fabricated films demonstrated excellent thermal and chemical stability, and a large refractive index, which avails their integration into emerging solid-state nanocrystal devices. The ability to control size and shape of NCs is essential as it automatically affects the optoelectronic properties of the crystals. Colloidal chemistry offers an assortment of synthetic tools for tuning the shape of NCs, but some nanoparticle morphologies require alternative processing strategies. We have shown that chemical etching of colloidal nanoparticles can facilitate the realization of desirable nanocrystal geometries. This methodology allows both CdSe and CdS composed semiconductor domains be exposed to the external environment, while maintaining a structural design that is highly desirable for catalytic applications. Hydrogen production tests confirmed the improved catalytic activity of CdSe/CdS dimers. We expect that the demonstrated application will become a common methodology in the synthesis of charge-separating nanocrystals, leading to advanced nanoparticle architectures for applications in the areas of photocatalysis, photovoltaics, and light detection
    corecore