10 research outputs found

    Study of corrosion, crystal structure and magnetic properties on OL52 and OL52.4 steels in different seawaters

    Get PDF
    The corrosion of OL 52 and OL52.4 steels exposed to seawaters (Black, Aegean and Mediterranean Sea) has been investigated by weight loss method and the corresponding corrosion rates in the three sea waters are calculated. Before and after immersion in the corrosive medium micrographic images are obtained. XRD and ponderomotive methods have been used to determine the influence of the seawaters corrosion processes on the structure and magnetization of the studied steels. Obtained results show that both OL52 and OL52.4 steels have good corrosion resistance in the studied seawaters

    Luminescent Hydroxyapatite Doped with Rare Earth Elements for Biomedical Applications

    No full text
    One new, promising approach in the medical field is represented by hydroxyapatite doped with luminescent materials for biomedical luminescence imaging. The use of hydroxyapatite-based luminescent materials is an interesting area of research because of the attractive characteristics of such materials, which include biodegradability, bioactivity, biocompatibility, osteoconductivity, non-toxicity, and their non-inflammatory nature, as well their accessibility for surface adaptation. It is well known that hydroxyapatite, the predominant inorganic component of bones, serves a substantial role in tissue engineering, drug and gene delivery, and many other biomedical areas. Hydroxyapatite, to the detriment of other host matrices, has attracted substantial attention for its ability to bind to luminescent materials with high efficiency. Its capacity to integrate a large assortment of substitutions for Ca2+, PO43−, and/or OH− ions is attributed to the versatility of its apatite structure. This paper summarizes the most recently developed fluorescent materials based on hydroxyapatite, which use rare earth elements (REEs) as dopants, such as terbium (Tb3+), erbium (Er3+), europium (Eu3+), lanthanum (La3+), or dysprosium (Dy3+), that have been developed in the biomedical field

    Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering

    No full text
    In recent years, the number of people needing bone replacements for the treatment of defects caused by chronic diseases or accidents has continuously increased. To solve these problems, tissue engineering has gained significant attention in the biomedical field, by focusing on the development of suitable materials that improve osseointegration and biologic activity. In this direction, the development of an ideal material that provides good osseointegration, increased antimicrobial activity and preserves good mechanical properties has been the main challenge. Currently, bone tissue engineering focuses on the development of materials with tailorable properties, by combining polymers and ceramics to meet the necessary complex requirements. This study presents the main polymers applied in tissue engineering, considering their advantages and drawbacks. Considering the potential disadvantages of polymers, improving the applicability of the material and the combination with a ceramic material is the optimum pathway to increase the mechanical stability and mineralization process. Thus, ceramic materials obtained from natural sources (e.g., hydroxyapatite) are preferred to improve bioactivity, due to their similarity to the native hydroxyapatite found in the composition of human bone

    Synthesis and Characterization of Porous Forsterite Ceramics with Prospective Tissue Engineering Applications

    No full text
    Due to the urgent need to develop and improve biomaterials, the present article proposes a new strategy to obtain porous scaffolds based on forsterite (Mg2SiO4) for bone tissue regeneration. The main objective is to restore and improve bone function, providing a stable environment for regeneration. The usage of magnesium silicate relies on its mechanical properties being superior to hydroxyapatite and, in general, to calcium phosphates, as well as its high biocompatibility, and antibacterial properties. Mg2SiO4 powder was obtained using the sol-gel method, which was calcinated at 800 °C for 2 h; then, part of the powder was further used to make porous ceramics by mixing it with a porogenic agent (e.g., sucrose). The raw ceramic bodies were subjected to two sintering treatments, at 1250 or 1320 °C, and the characterization results were discussed comparatively. The porogenic agent did not influence the identified phases or the samples’ crystallinity and was efficiently removed during the heat treatment. Moreover, the effect of the porogenic agent no longer seems significant after sintering at 1250 °C; the difference in porosity between the two ceramics was negligible. When analysing the in vitro cytotoxicity of the samples, the ones that were porous and treated at 1320 °C showed slightly better cell viability, with the cells appearing to adhere more easily to their surface.</b

    Study of corrosion, crystal structure and magnetic properties on OL52 and OL52.4 steels in different seawaters

    No full text
    503-510The corrosion of OL 52 and OL52.4 steels exposed to seawaters (Black, Aegean and Mediterranean Sea) has been investigated by weight loss method and the corresponding corrosion rates in the three sea waters are calculated. Before and after immersion in the corrosive medium micrographic images are obtained. XRD and ponderomotive methods have been used to determine the influence of the seawaters corrosion processes on the structure and magnetization of the studied steels. Obtained results show that both OL52 and OL52.4 steels have good corrosion resistance in the studied seawaters

    Investigation of Long-Term Corrosion of CoCrMoW Alloys under Simulated Physiological Conditions

    No full text
    The corrosion resistance of two cast CoCr-based alloys with different amounts of chromium and with different alloying elements in the bulk composition of the alloy was assessed. In this study, we investigated the corrosion behavior of Co21Cr8Mo7W and Co29Cr7W by open-circuit potential (OCP), potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS) in 0.1 M phosphate buffer solution (PBS) at 37 °C with long immersion times. After 1000 h of immersion, the corrosion current density (icor), estimated from anodic polarization tests, was lower for the Co21Cr8Mo7W (i.e., 49 nA cm−2) alloy compared to the Co29Cr7W alloy (180 nA cm−2). As regards the corrosion potential (Ecor), a greater value was observed for Co21Cr8Mo7W (i.e., −59 mV vs. Ag/AgCl) compared to Co29Cr7W (i.e., −114 mV vs. Ag/AgCl). Microstructure analysis before and after immersion revealed the formation of a more compact passive film on the Co21Cr8Mo7W alloy, suggesting superior corrosion resistance compared to Co29Cr7W. These findings suggest better corrosion resistance for the film formed on the alloy containing lower amounts of Cr and two alloying elements, Mo and W. These results are promising in terms of medical applications because they open the door to new strategies for obtaining alloys with lower chromium content and with more protective anti-corrosion properties

    Electrochemical behaviour of ternary Ni-Zn-P thin films deposition on steel substrate

    Get PDF
    572-577Ternary Ni-Zn-P alloy thin films  with a thickness of 15-20 μm are considered as a replacement for cadmium sacrificial coatings for anticorrosive protection of steel parts working in highly corrosive media. Anticorrosive Ni-Zn-P thin films has been electrochemically deposited from aqueous sulphate solutions on carbon steel substrate. The influence of bath composition (variable ZnSO4·7H2O contents) and electrodeposition type (potentiostatic or galvanostatic) on physical-chemical and corrosion characteristics of obtained films have been studied. Films are characterized by energy dispersive analysis (EDAX) and scanning electron microscopy (SEM). The corrosion tests are performed in 3% NaCl solution with optimal resulting values of -916.2 mV vs. saturated calomel electrode (SCE) for the corrosion potential and 13.4 μA·cm-2 for the corrosion current density. The calculated value for the corrosive attack protection efficiency is 67.7%

    Fly-ash evaluation as potential EOL material replacement of cement in pastes: morpho-structural and physico-chemical properties assessment

    No full text
    The main objective of the study was to produce alternative binder materials, obtained with low cost, low energy consumption, and low CO2 production, by regenerating end-of-life (EOL) materials from mineral deposits, to replace ordinary Portland cement (OPC). The materials analyzed were ash and slag from the Turceni thermal power plant deposit, Romania. These were initially examined for morphology, mineralogical composition, elemental composition, degree of crystallinity, and heating behavior, to determine their ability to be used as a potential source of supplementary cementitious materials (SCM) and to establish the activation and transformation temperature in the SCM. The in-situ pozzolanic behavior of commercial cement, as well as cement mixtures with different percentages of ash addition, were further observed. The mechanical resistance, water absorption, sorptivity capacity, resistance to alkali reactions (ASR), corrosion resistance, and resistance to reaction with sulfates were evaluated in this study using low-vacuum scanning electron microscopy
    corecore