24 research outputs found

    Affinity maturation by targeted diversification of the CDR-H2 loop of a monoclonal Fab derived from a synthetic naΓ―ve human antibody library and directed against the internal trimeric coiled-coil of gp41 yields a set of Fabs with improved HIV-1 neutralization potency and breadth

    Get PDF
    AbstractPreviously we reported a broadly HIV-1 neutralizing mini-antibody (Fab 3674) of modest potency that was derived from a human non-immune phage library by panning against the chimeric gp41-derived construct NCCG-gp41. This construct presents the N-heptad repeat of the gp41 ectodomain as a stable, helical, disulfide-linked trimer that extends in helical phase from the six-helix bundle of gp41. In this paper, Fab 3674 was subjected to affinity maturation against the NCCG-gp41 antigen by targeted diversification of the CDR-H2 loop to generate a panel of Fabs with diverse neutralization activity. Three affinity-matured Fabs selected for further study, Fabs 8060, 8066 and 8068, showed significant increases in both potency and breadth of neutralization against HIV-1 pseudotyped with envelopes of primary isolates from the standard subtype B and C HIV-1 reference panels. The parental Fab 3674 is 10–20-fold less potent in monovalent than bivalent format over the entire B and C panels of HIV-1 pseudotypes. Of note is that the improved neutralization activity of the affinity-matured Fabs relative to the parental Fab 3674 was, on average, significantly greater for the Fabs in monovalent than bivalent format. This suggests that the increased avidity of the Fabs for the target antigen in bivalent format can be partially offset by kinetic and/or steric advantages afforded by the smaller monovalent Fabs. Indeed, the best affinity-matured Fab (8066) in monovalent format (∼50Β kDa) was comparable in HIV-1 neutralization potency to the parental Fab 3674 in bivalent format (∼120Β kDa) across the subtype B and C reference panels

    Localization of ASV Integrase-DNA Contacts by Site-Directed Crosslinking and their Structural Analysis

    Get PDF
    We applied crosslinking techniques as a first step in preparation of stable avian sarcoma virus (ASV) integrase (IN)-DNA complexes for crystallographic investigations. These results were then compared with the crystal structures of the prototype foamy virus (PFV) intasome and with published data for other retroviral IN proteins.Photoaffinity crosslinking and site-directed chemical crosslinking were used to localize the sites of contacts with DNA substrates on the surface of ASV IN. Sulfhydryl groups of cysteines engineered into ASV IN and amino-modified nucleotides in DNA substrates were used for attachment of photocrosslinkers. Analysis of photocrosslinking data revealed several specific DNA-protein contacts. To confirm contact sites, thiol-modified nucleotides were introduced into oligo-DNA substrates at suggested points of contact and chemically crosslinked to the cysteines via formation of disulfide bridges. Cysteines incorporated in positions 124 and 146 in the ASV IN core domain were shown to interact directly with host and viral portions of the Y-mer DNA substrate, respectively. Crosslinking of an R244C ASV IN derivative identified contacts at positions 11 and 12 on both strands of viral DNA. The most efficient disulfide crosslinking was observed for complexes of the ASV IN E157C and D64C derivatives with linear viral DNA substrate carrying a thiol-modified scissile phosphate.Analysis of our crosslinking results as well as published results of retroviral IN protein from other laboratories shows good agreement with the structure of PFV IN and derived ASV, HIV, and MuLV models for the core domain, but only partial agreement for the N- and C-terminal domains. These differences might be explained by structural variations and evolutionary selection for residues at alternate positions to perform analogous functions, and by methodological differences: i.e., a static picture of a particular assembly from crystallography vs. a variety of interactions that might occur during formation of functional IN complexes in solution

    Sequestering of the Prehairpin Intermediate of gp41 by Peptide N36Mut(e,g) Potentiates the Human Immunodeficiency Virus Type 1 Neutralizing Activity of Monoclonal Antibodies Directed against the N-Terminal Helical Repeat of gp41β–Ώ

    No full text
    Human immunodeficiency virus type 1 (HIV-1) neutralization can be effected by several classes of inhibitors that target distinct regions of gp41 that are accessible in the prehairpin intermediate (PHI) state and block the formation of the six-helix bundle (6-HB) conformation of gp41. The N-heptad repeat (N-HR) of gp41 is the site of action of two classes of inhibitors. One class binds to the trimeric N-HR coiled coil, while the other, exemplified by the peptide N36Mut(e,g), disrupts the trimer and sequesters the PHI through the formation of heterotrimers. We recently reported a neutralizing Fab (Fab 3674), selected from a nonimmune phage library, that binds to the trimeric N-HR coiled coil through an epitope that remains exposed in the 6-HB and is also present in heterotrimers of the N-HR and N36Mut(e,g) peptide. Here we show that N36Mut(e,g) prolongs the temporal window during which the virus is susceptible to neutralization by the bivalent Fab 3674 and that bivalent Fab 3674 and N36Mut(e,g) neutralize HXB2 and SF162 strains of HIV-1, as well as isolates of diverse primary B and C HIV-1 strains, synergistically in a Env-pseudotyped virus neutralization assay. N36Mut(e,g) also rescues neutralizing activity of Fab 3674 against resistant virus strains and renders a series of related nonneutralizing Fabs neutralizing. Moreover, N36Mut(e,g) exhibits the same effects on the broadly neutralizing 2F5 and 4E10 monoclonal antibodies directed against the membrane-proximal extended region of gp41. The mechanistic implications of these findings are discussed

    Structural basis of HIV-1 neutralization by affinity matured Fabs directed against the internal trimeric coiled-coil of gp41.

    Get PDF
    The conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 is transiently exposed during the fusion process by forming a pre-hairpin intermediate, thus representing an attractive target for the design of fusion inhibitors and neutralizing antibodies. In previous studies we reported a series of broadly neutralizing mini-antibodies derived from a synthetic naΓ―ve human combinatorial antibody library by panning against a mimetic of the trimeric N-HR coiled coil, followed by affinity maturation using targeted diversification of the CDR-H2 loop. Here we report crystal structures of the N-HR mimetic 5-Helix with two Fabs that represent the extremes of this series: Fab 8066 is broadly neutralizing across a wide panel of B and C type HIV-1 viruses, whereas Fab 8062 is non-neutralizing. The crystal structures reveal important differences in the conformations of the CDR-H2 loops in the complexes that propagate into other regions of the antigen-antibody interface, and suggest that both neutralization properties and affinity for the target can be attributed, at least in part, to the differences in the interactions of the CDR-H2 loops with the antigen. Furthermore, modeling of the complex of an N-HR trimer with three Fabs suggests that the CDR-H2 loop may be involved in close intermolecular contacts between neighboring antibody molecules, and that such contacts may hinder the formation of complexes between the N-HR trimer and more than one antibody molecule depending on the conformation of the bound CDR-H2 loop which is defined by its interactions with antigen. Comparison with the crystal structure of the complex of 5-Helix with another neutralizing monoclonal antibody known as D5, derived using an entirely different antibody library and panning procedure, reveals remarkable convergence in the optimal sequence and conformation of the CDR-H2 loop

    A Monoclonal Fab Derived from a Human Nonimmune Phage Library Reveals a New Epitope on gp41 and Neutralizes Diverse Human Immunodeficiency Virus Type 1 Strainsβ–Ώ

    No full text
    A monoclonal Fab (Fab 3674) selected from a human nonimmune phage library by panning against the chimeric construct NCCG-gp41 (which comprises an exposed coiled-coil trimer of gp41 N helices fused in the helical phase onto the minimal thermostable ectodomain of gp41) is described. Fab 3674 is shown to neutralize diverse laboratory-adapted B strains of human immunodeficiency virus type 1 (HIV-1) and primary isolates of subtypes A, B, and C in an Env-pseudotyped-virus neutralization assay, albeit with reduced potency (approximately 25-fold) compared to that of 2F5 and 4E10. Alanine scanning mutagenesis maps a novel epitope to a shallow groove on the N helices of gp41 that is exposed between two C helices in the fusogenic six-helix bundle conformation of gp41. Bivalent Fab 3674 and the C34 peptide (a potent fusion inhibitor derived from the C helix of gp41) are shown to act at similar stages of the fusion reaction and to neutralize HIV-1 synergistically, providing additional evidence that the epitope of Fab 3674 is new and distinct from the binding site of C34

    Complexes of Neutralizing and Non-Neutralizing Affinity Matured Fabs with a Mimetic of the Internal Trimeric Coiled-Coil of HIV-1 gp41

    Get PDF
    <div><p>A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)<sub>3</sub> or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Γ… resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen design.</p></div

    Electron density for the fragments of the structure comprising CDRs H2 of the Fabs and N helices of 3-H.

    No full text
    <p>The 2Fo-Fc maps are contoured at 1.0 Οƒ and are shown for the fragments of N helices comprising residues 571–575, and for CDRs H2 (residues 51–57). A) (Fab 8066)<sub>3</sub>/3-H. Fab is green and 3-H is blue. B) (Fab 8062)<sub>3</sub>/3-H. Fab is yellow and 3-H is orange.</p

    Comparison of the antigen-antibody interactions of single Fabs 8066 and 8062 in the complexes with 3-H and 5-Helix.

    No full text
    <p>Fabs were superimposed using the CΞ± traces of the Ξ²-sheet framework of the variable domains. CDRs and N-HR helices of the complexes of Fab 8066 with 3-H and 5-Helix are shown in red and green, respectively, while the corresponding fragments of the complexes of Fab 8062 are blue and yellow. (A) Superposition of all CDRs in two complexes with 3-H. (B) Contacts between CDRs H2 and two 2 N-HR helices in the four complexes. (C) A similar conformation of CDR H3 in the four complexes is stabilized by a cluster of aromatic residues from CDRs H3, L1 and L3. Residues F96, Y100B, and F100D of CDR H3 are displayed, but, for clarity, are not labeled.</p

    The interaction of the Fab 8066 with 3-H.

    No full text
    <p>Solid lines show the global best-fit to a non-cooperative A+B+B+B interaction in which the trimer A has three symmetric binding sites. A global analysis of the data results in a K<sub>d1</sub> affinity of 4.3 nM. (A) Binding affinity of Fab 8066 to the 3-H. Corrected fluorescence intensity differences (325–355 nm) as a function of the complex concentration in a dilution experiment using a (Fab 8066)<sub>3</sub>/3-H trimer complex previously characterized by sedimentation velocity (Fig. X1C). (B) Binding enthalpy of Fab 8066 to the 3-H. Isothermal titration calorimetry data for the titration of 19 Β΅M Fab 8066 into a solution containing 1.77 Β΅M trimer. (C) Interference <i>s<sub>w</sub></i> isotherm (magenta) and absorbance <i>s<sub>w</sub></i> (purple) isotherm (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0078187#pone-0078187-g002" target="_blank">Fig. 2A</a>) data along with the best-fits obtained in a global analysis of the data sets shown.</p
    corecore