7 research outputs found

    Control of paratuberculosis: who, why and how. A review of 48 countries

    Get PDF
    Paratuberculosis, a chronic disease affecting ruminant livestock, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has direct and indirect economic costs, impacts animal welfare and arouses public health concerns. In a survey of 48 countries we found paratuberculosis to be very common in livestock. In about half the countries more than 20% of herds and flocks were infected with MAP. Most countries had large ruminant populations (millions), several types of farmed ruminants, multiple husbandry systems and tens of thousands of individual farms, creating challenges for disease control. In addition, numerous species of free-living wildlife were infected. Paratuberculosis was notifiable in most countries, but formal control programs were present in only 22 countries. Generally, these were the more highly developed countries with advanced veterinary services. Of the countries without a formal control program for paratuberculosis, 76% were in South and Central America, Asia and Africa while 20% were in Europe. Control programs were justified most commonly on animal health grounds, but protecting market access and public health were other factors. Prevalence reduction was the major objective in most countries, but Norway and Sweden aimed to eradicate the disease, so surveillance and response were their major objectives. Government funding was involved in about two thirds of countries, but operations tended to be funded by farmers and their organizations and not by government alone. The majority of countries (60%) had voluntary control programs. Generally, programs were supported by incentives for joining, financial compensation and/or penalties for non-participation. Performance indicators, structure, leadership, practices and tools used in control programs are also presented. Securing funding for long-term control activities was a widespread problem. Control programs were reported to be successful in 16 (73%) of the 22 countries. Recommendations are made for future control programs, including a primary goal of establishing an international code for paratuberculosis, leading to universal acknowledgment of the principles and methods of control in relation to endemic and transboundary disease. An holistic approach across all ruminant livestock industries and long-term commitment is required for control of paratuberculosis

    Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus.

    Get PDF
    Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease

    Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus

    No full text
    Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to &amp;lt;0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.</jats:p

    Data_Sheet_1_Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus.PDF

    No full text
    Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.</p

    Diagnostic response to a cross-border challenge for the Swiss caprine arthritis encephalitis virus eradication program.

    No full text
    INTRODUCTION Animal trading between countries with different small ruminant lentivirus infectious status is a potential danger for the reintroduction of eradicated genotypes. This was the case in 2017 with the importation of a large flock of seropositive goats into Switzerland. The handling of this case permitted us to test the preventive measures in place. The coordination between the local veterinarian and the cantonal and federal veterinary authorities worked efficiently and rapidly involved the national reference center in the investigations. This case posed a challenge for the reference center and enabled scrutiny of the applied diagnostic tests. ELISA and western blot provided consistent results and pointed to an unusually high infection rate in the flock. This was confirmed by the isolation of several viruses from different organs and cells, demonstrating that the spleen is particularly well suited for isolation of small ruminant lentiviruses. The SU5-ELISA, designed to predict the subtype of the infecting virus, correctly pointed to a B1 subtype as the infectious agent. We confirmed that with this test it is necessary to analyze a representative number of samples from a flock and not just individual sera to obtain reliable results. This analysis permitted us to identify particular amino acid residues in the SU5 peptides that may be crucial in determining the subtype specificity of antibody binding. Different gag-pol and env regions were amplified by PCR using primers designed for this purpose. The phylogenetic analysis revealed a surprisingly high heterogeneity of the sequences, pointing to multiple infections within single animals and the entire flock. In conclusion, this case showed that the defense of the CAEV negative status of the Swiss goat population with respect to the virulent, prototypic B1 subtype of small ruminant lentiviruses, requires, among other measures, a diagnostic facility capable of performing a thorough analysis of the collected samples

    Control of paratuberculosis: who, why and how. A review of 48 countries

    Get PDF
    Paratuberculosis, a chronic disease affecting ruminant livestock, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has direct and indirect economic costs, impacts animal welfare and arouses public health concerns. In a survey of 48 countries we found paratuberculosis to be very common in livestock. In about half the countries more than 20% of herds and flocks were infected with MAP. Most countries had large ruminant populations (millions), several types of farmed ruminants, multiple husbandry systems and tens of thousands of individual farms, creating challenges for disease control. In addition, numerous species of free-living wildlife were infected. Paratuberculosis was notifiable in most countries, but formal control programs were present in only 22 countries. Generally, these were the more highly developed countries with advanced veterinary services. Of the countries without a formal control program for paratuberculosis, 76% were in South and Central America, Asia and Africa while 20% were in Europe. Control programs were justified most commonly on animal health grounds, but protecting market access and public health were other factors. Prevalence reduction was the major objective in most countries, but Norway and Sweden aimed to eradicate the disease, so surveillance and response were their major objectives. Government funding was involved in about two thirds of countries, but operations tended to be funded by farmers and their organizations and not by government alone. The majority of countries (60%) had voluntary control programs. Generally, programs were supported by incentives for joining, financial compensation and/or penalties for non-participation. Performance indicators, structure, leadership, practices and tools used in control programs are also presented. Securing funding for long-term control activities was a widespread problem. Control programs were reported to be successful in 16 (73%) of the 22 countries. Recommendations are made for future control programs, including a primary goal of establishing an international code for paratuberculosis, leading to universal acknowledgment of the principles and methods of control in relation to endemic and transboundary disease. An holistic approach across all ruminant livestock industries and long-term commitment is required for control of paratuberculosis
    corecore