297 research outputs found

    Haptics in Robot-Assisted Surgery: Challenges and Benefits

    Get PDF
    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intra-operative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper objectives and challenges of deploying haptic technologies in surgical robotics is discussed and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It has been tried to encompass both classical works and the state of the art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts

    Non linear force feedback enhancement for cooperative robotic neurosurgery enforces virtual boundaries on cortex surface

    Get PDF
    Surgeons can benefit from the cooperation with a robotic assistant during the repetitive execution of precise targeting tasks on soft tissues, such as brain cortex stimulation procedures in open-skull neurosurgery. Position-based force-to-motion control schemes may not be satisfactory solution to provide the manipulator with the high compliance desirable during guidance along wide trajectories. A new torque controller with non-linear force feedback enhancement (FFE) is presented to provide augmented haptic perception to the operator from instrument-tissue interaction. Simulation tests were performed to evaluate the system stability according to different non-linear force modulation functions (power, sigmoidal and arc tangent). The FFE controller with power modulation was experimentally validated with a pool of non-expert users using brain-mimicking gelatin phantoms (8%-16% concentration). Besides providing hand tremor rejection for a stable holding of the tool, the FFE controller was proven to allow for a safer tissue contact with respect to both robotic assistance without force feedback and freehand executions (50% and 75% reduction of the indentation depth, respectively). Future work will address the evaluation of the safety features of the FFE controller with expert surgeons on a realistic brain phantom, also accounting for unpredictable tissue's motions as during seizures due to cortex stimulation

    Skill-based human-robot cooperation in tele-operated path tracking

    Get PDF
    This work proposes a shared-control tele-operation framework that adapts its cooperative properties to the estimated skill level of the operator. It is hypothesized that different aspects of an operatorâ\u80\u99s performance in executing a tele-operated path tracking task can be assessed through conventional machine learning methods using motion-based and task-related features. To identify performance measures that capture motor skills linked to the studied task, an experiment is conducted where users new to tele-operation, practice towards motor skill proficiency in 7 training sessions. A set of classifiers are then learned from the acquired data and selected features, which can generate a skill profile that comprises estimations of userâ\u80\u99s various competences. Skill profiles are exploited to modify the behavior of the assistive robotic system accordingly with the objective of enhancing user experience by preventing unnecessary restriction for skilled users. A second experiment is implemented in which novice and expert users execute the path tracking on different pathways while being assisted by the robot according to their estimated skill profiles. Results validate the skill estimation method and hint at feasibility of shared-control customization in tele-operated path tracking

    An adaptive compliance Hierarchical Quadratic Programming controller for ergonomic human–robot collaboration

    Get PDF
    This paper proposes a novel Augmented Hierarchical Quadratic Programming (AHQP) framework for multi-tasking control in Human-Robot Collaboration (HRC) which integrates human-related parameters to optimize ergonomics. The aim is to combine parameters that are typical of both industrial applications (e.g. cycle times, productivity) and human comfort (e.g. ergonomics, preference), to identify an optimal trade-off. The augmentation aspect avoids the dependency from a fixed end-effector reference trajectory, which becomes part of the optimization variables and can be used to define a feasible workspace region in which physical interaction can occur. We then demonstrate that the integration of the proposed AHQP in HRC permits the addition of human ergonomics and preference. To achieve this, we develop a human ergonomics function based on the mapping of an ergonomics score, compatible with AHQP formulation. This allows to identify at control level the optimal Cartesian pose that satisfies the active objectives and constraints, that are now linked to human ergonomics. In addition, we build an adaptive compliance framework that integrates both aspects of human preferences and intentions, which are finally tested in several collaborative experiments using the redundant MOCA robot. Overall, we achieve improved human ergonomics and health conditions, aiming at the potential reduction of work-related musculoskeletal disorders

    Development of an intelligent surgical training system for Thoracentesis

    Get PDF
    Surgical training improves patient care, helps to reduce surgical risks, increases surgeon’s confidence, and thus enhances overall patient safety. Current surgical training systems are more focused on developing technical skills, e.g. dexterity, of the surgeons while lacking the aspects of context-awareness and intra-operative real-time guidance. Context-aware intelligent training systems interpret the current surgical situation and help surgeons to train on surgical tasks. As a prototypical scenario, we chose Thoracentesis procedure in this work. We designed the context-aware software framework using the surgical process model encompassing ontology and production rules, based on the procedure descriptions obtained through textbooks and interviews, and ontology-based and marker-based object recognition, where the system tracked and recognised surgical instruments and materials in surgeon’s hands and recognised surgical instruments on the surgical stand. The ontology was validated using annotated surgical videos, where the system identified “Anaesthesia” and “Aspiration” phase with 100% relative frequency and “Penetration” phase with 65% relative frequency. The system tracked surgical swab and 50 mL syringe with approximately 88.23% and 100% accuracy in surgeon’s hands and recognised surgical instruments with approximately 90% accuracy on the surgical stand. Surgical workflow training with the proposed system showed equivalent results as the traditional mentor-based training regime, thus this work is a step forward a new tool for context awareness and decision-making during surgical training

    Toward a Knowledge-Driven Context-Aware System for Surgical Assistance

    Get PDF
    Complex surgeries complications are increasing, thus making an efficient surgical assistance is a real need. In this work, an ontology-based context-aware system was developed for surgical training/assistance during Thoracentesis by using image processing and semantic technologies. We evaluated the Thoracentesis ontology and implemented a paradigmatic test scenario to check the efficacy of the system by recognizing contextual information, e.g. the presence of surgical instruments on the table. The framework was able to retrieve contextual information about current surgical activity along with information on the need or presence of a surgical instrument

    Automated pick-up of suturing needles for robotic surgical assistance

    Get PDF
    Robot-assisted laparoscopic prostatectomy (RALP) is a treatment for prostate cancer that involves complete or nerve sparing removal prostate tissue that contains cancer. After removal the bladder neck is successively sutured directly with the urethra. The procedure is called urethrovesical anastomosis and is one of the most dexterity demanding tasks during RALP. Two suturing instruments and a pair of needles are used in combination to perform a running stitch during urethrovesical anastomosis. While robotic instruments provide enhanced dexterity to perform the anastomosis, it is still highly challenging and difficult to learn. In this paper, we presents a vision-guided needle grasping method for automatically grasping the needle that has been inserted into the patient prior to anastomosis. We aim to automatically grasp the suturing needle in a position that avoids hand-offs and immediately enables the start of suturing. The full grasping process can be broken down into: a needle detection algorithm; an approach phase where the surgical tool moves closer to the needle based on visual feedback; and a grasping phase through path planning based on observed surgical practice. Our experimental results show examples of successful autonomous grasping that has the potential to simplify and decrease the operational time in RALP by assisting a small component of urethrovesical anastomosis
    • …
    corecore