21 research outputs found
Ultraviolet B exposure of whole leaves of barley affects structure and functional organization of photosystem II.
This study examines the effects of ecologically important levels of ultraviolet B radiation on protein D1 turnover and stability and lateral redistribution of photosystem II. It is shown that ultraviolet B light supported only limited synthesis of protein D1, one of the most important components of photosystem II, whereas it promoted significant degradation of proteins D1 and D2. Furthermore, dephosphorylation of photosystem II subunits was specifically elicited upon exposure to ultraviolet B light. Structural modifications of photosystem II and changes in its lateral distribution between granum membranes and stroma-exposed lamellae were found to be different from those observed after photoinhibition by strong visible light. In particular, more complete dismantling of photosystem II cores was observed. Altogether, the data reported here suggest that ultraviolet B radiation alone fails to activate the photosystem II repair cycle, as hypothesized for visible light. This failure may contribute to the toxic effect of ultraviolet B radiation, which is increasing as a consequence of depletion of stratospheric ozone
Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1
Desulfotomaculum reducens MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing several metals, among which is Fe(III). Very limited knowledge is available on the potential mechanism(s) of metal reduction among Gram-positive bacteria, despite their preponderance in the microbial communities that inhabit some inhospitable environments (e.g., thermal or hyperthermal ecosystems, extreme pH or salinity environments, heavy metal or radionuclide contaminated sediments). Here, we show that in the presence of pyruvate, this micro-organism is capable of reducing both soluble Fe(III)-citrate and solid-phase hydrous ferric oxide, although growth is sustained by pyruvate fermentation rather than Fe(III) respiration. Despite the fact that Fe(III) reduction does not support direct energy conservation, D.reducens uses it as a complementary means of discarding excess reducing equivalent after H-2 accumulation in the culture headspace renders proton reduction unfavorable. Thus, Fe(III) reduction permits the oxidation of greater amounts of pyruvate than fermentation alone. Fe(III) reduction by D.reducens is mediated by a soluble electron carrier, most likely riboflavin. Additionally, an intracellular electron storage molecule acts as a capacitor and accumulates electrons during pyruvate oxidation for slow release to Fe(III). The reductase responsible for the transfer of electrons from the capacitor to the soluble carrier has not been identified, but data presented here argue against the involvement of c-type cytochromes
The response of Desulfotomaculum reducens MI-1 to U(VI) exposure: a transcriptomic study
Desulfotomaculum reducens is the first Gram-positive sulfate- and metal-reducing bacterium for which the transcriptomic response to uranium exposure has been evaluated. The genes upregulated during fermentative growth in the presence of U(VI) as compared to its absence included those encoding for proteins involved in respiration such as NADH quinone oxidoreductase and heterodisulfide reductase. This finding suggested that electrons were shuttled to the electron transport chain during fermentation and points to the reduction of U(VI) as a metabolic process. Although U(IV) is typically insoluble and readily removable by filtration, U(IV) produced during active growth was not retained by a 0.2 mu m pore size filter and filtration was not sufficient to differentiate between U(VI) and U(IV). In addition, genes involved in iron homeostasis were upregulated in the presence of uranium, which was consistent with the upregulation of genes involved in c-type cytochrome biogenesis. Despite the upregulation of cytochrome biosynthesis genes, the sole c-type cytochrome encoded in the genome was not differentially expressed. Finally, genes encoding metal efflux pumps were also upregulated indicating the toxic nature of uranium. Analysis of the time-dependent gene expression showed that sporulation was the dominant process at the early stationary phase and that the presence of U at that stage did not impact expression
U(VI) reduction by spores of Clostridium acetobutylicum
Vegetative cells of Clostridium acetobutylicum are known to reduce hexavalent uranium (U(VI)). We investigated the ability of spores of this organism to drive the same reaction. We found that spores were able to remove U(VI) from solution when H, was provided as an electron donor and to form a U(IV) precipitate. We tested several environmental conditions and found that spent vegetative cell growth medium was required for the process. Electron microscopy showed the product of reduction to accumulate outside the exosporium. Our results point towards a novel U(VI) reduction mechanism, driven by spores, that is distinct from the thoroughly studied reactions in metal-reducing Proteobacteria. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved
Non-uraninite products of microbial U(VI) reduction
A promising remediation approach to mitigate subsurface uranium contamination is the stimulation of indigenous bacteria to reduce mobile U(VI) to sparingly soluble U(IV). The product of microbial uranium reduction is often reported as the mineral uraninite. Here, we show that the end products of uranium reduction by several environmentally relevant bacteria (Gram-positive and Gram-negative) and their spores include a variety of U(IV) species other than uraninite. U(IV) products were prepared in chemically variable media and characterized using transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) to elucidate the factors favoring/inhibiting uraninite formation and to constrain molecular structure/composition of the non-uraninite reduction products. Molecular complexes of U(IV) were found to be bound to biomass, most likely through P-containing ligands. Minor U(IV)-orthophosphates such as ningyoite [CaU(PO4)(2)], U2O(PO4)(2), and U-2(PO4)(P3O10) were observed in addition to uraninite. Although factors controlling the predominance of these species are complex, the presence of various solutes was found to generally inhibit uraninite formation. These results suggest a new paradigm for U(IV) in the subsurface, i.e., that non-uraninite U(IV) products may be found more commonly than anticipated. These findings are relevant for bioremediation strategies and underscore the need for characterizing the stability of non-uraninite U(IV) species in natural settings
Global assessment of aquatic IsoeÌtes species ecology
1. Isoetes are iconic but understudied wetland plants, despite having suffered severe losses globally mainly because of alterations in their habitats. We therefore provide the first global ecological assessment of aquatic Isoetes to identify their environmental requirements and to evaluate if taxonomically related species differ in their ecology. 2. The assessment resulted in an extensive new database on aquatic Isoetes, ecological niche analyses, and descriptive species accounts. We compiled a global database that includes all known environmental data collected from 1935 to 2023 regarding aquatic Isoetes. We then evaluated the environmental drivers of 16 species using 2,179 global records. Additionally, we used hypervolume analysis to quantify the ecological niches of the two species with the greatest number of records, finding significant differences and evidence that Isoetes echinospora occupies a wider ecological niche than Isoetes lacustris. 3. Fifty-nine species (30% of the c. 200 Isoetes species known today) were categorised as aquatic and were mainly reported in the Americas and northern Europe. About 38% of the aquatic species are threatened with extinction or are endemic to a small region, according to the International Union for Conservation of Nature's Red List in 2023. Many species were determined to be sensitive to certain water physical and chemical factors, generally preferring oligotrophic conditions such as low total phosphorus, moderate total nitrogen, moderate to low pH, and low conductivity. 4. This analysis includes ecological data in the assessment of rare/threatened aquatic plants globally. This new database and the ecological analyses completed defined the ecological requirements of several species and identified knowledge gaps, which can aid management actions and future research. 5. This paper highlights ecological significance and environmental sensitivities of aquatic Isoetes. The current level of knowledge is inadequate for a large proportion of known taxa. We affirm the extreme need to support global, collaborative initiatives on which to build future conservation strategies
Metal reduction and sporulation in Desulfotomaculum reducens
The genera Desulfotomaculum and Clostridium, belonging to the phylum Firmicutes, comprise Gram-positive, low G+C genomic content, anaerobic, spore- forming bacteria. Desulfotomaculum is a metabolically and environmentally versatile genus capable of growing fermentatively as well as by respiring sulfate. D. reducens is also capable of metal reduction and has been reported to conserve energy from this process. In this thesis, iron (Fe(III)) reduction by D. reducens in the presence of pyruvate or lactate as electron donors was investigated. When pyruvate is present, D. reducens grows fermentatively. If Fe(III) is present, it can act as an electron sink alternative to protons and consume excess reducing equivalents accumulated during pyruvate oxidation. Electron transfer to Fe(III) by D. reducens in the presence of pyruvate is mediated by a soluble electron carrier, likely riboflavin, released by cells during fermentation. This mechanism allows the microorganism to reduce extracellular, solid phase Fe(III) even if it is not directly accessible by physical contact. In the presence of lactate, D. reducens is unable to conserve significant energy from electron donor oxidation and Fe(III) reduction. In contrast to pyruvate, during lactate oxidation, no redox-active compound is released by the cells, and extracellular, solid phase Fe(III) can only be reduced by direct contact. This implies that a surface exposed reductase must be present in D. reducens cells. The investigation of the surface proteome of this organism led to the identification of three proteins, most likely localized to the cell surface, potentially involved in Fe(III) reduction. One is a heterodisulfide reductase subunit A, a putative intermediate in the Fe(III) reduction chain. The second is a membrane-associated hydrogenase. The third protein is annotated as alkyl hydroperoxide reductase although its actual function may be thiol-disulfide oxidoreduction; several lines of evidence suggest the involvement of the latter in metal reduction by D. reducens. Clostridium species are widespread in the environment and are capable of utilizing a great variety of organic substrates for fermentative growth, while they are unable to conserve energy through respiration. However, they can reduce terminal electron acceptors to eliminate excess reducing equivalents from fermentation. Among the electron acceptors used by Clostridium spp., are metals, such as iron and uranium (U(VI)). One species whose vegetative cells are capable of U(VI) reduction is C. acetobutylicum, although little information is available on the mechanism underlying this process. In this thesis, the potential involvement of the spores of C. acetobutylicum in U(VI) reduction is probed. It was found that the spores of this species can reduce the radionuclide, and that to do so they require the presence of an unidentified soluble compound released by growing cells and H2 as the electron donor. The involvement of spores in metal reduction is very interesting because generally spores are considered not to interact directly with the surrounding environment. In fact, spores are dormant, thus metabolically inactive, cells. Spore formation is a cell differentiation process activated in response to environmental stress and conditions that are hostile to vegetative growth. Sporulation has been extensively studied and characterized in Bacillus subtilis, for which a model has been developed. Some information is also available on sporulation in the clostridia. In this thesis, a genomic investigation of sporulation in the Desulfotomaculum genus was undertaken. The B. subtilis model was used as a reference and the information on Clostridium as a comparison. Significant similarities were found in the core regulatory process across genera, while some differences were identified in the initiation of sporulation. Substantial differences were highlighted in the spore structural proteins