9 research outputs found

    Cloning and expression analysis of hemoglobin genes from maize (\u3ci\u3eZea mays\u3c/i\u3e ssp. \u3ci\u3emays\u3c/i\u3e) and teosinte (\u3ci\u3eZea mays\u3c/i\u3e ssp. \u3ci\u3eparviglumis\u3c/i\u3e)

    Get PDF
    With the exception of barley and rice, little is known about the existence of hemoglobins (Hbs) in cereals. This work reports the cloning and analysis of hb genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis). Coding sequences of maize and teosinte hb genes (hbm and hbt, respectively) are highly similar to each other and are interrupted by three introns located at identical positions as other plant hb genes. Sequences of predicted Hbm and Hbt proteins are identical. The hydropathic profile of Hbm and Hbt is highly similar to that of rice Hb1, suggesting that Hbm, Hbt and Hb1 have the same tertiary structure and biochemical properties. Expression analysis showed that low levels of Hb transcripts, but considerable levels of Hb proteins exist in maize embryonic organs. No Hb transcripts and proteins were detected in teosinte embryonic organs. Low levels of Hb proteins, but no Hb transcripts, were detected in maize and teosinte vegetative organs. These observations suggest that the regulation of hb genes is different in maize and teosinte embryonic organs, and that the expression of hb genes is down- or up-regulated in maize and teosinte, respectively, from germination to vegetative growing

    Cloning and expression analysis of hemoglobin genes from maize (\u3ci\u3eZea mays\u3c/i\u3e ssp. \u3ci\u3emays\u3c/i\u3e) and teosinte (\u3ci\u3eZea mays\u3c/i\u3e ssp. \u3ci\u3eparviglumis\u3c/i\u3e)

    Get PDF
    With the exception of barley and rice, little is known about the existence of hemoglobins (Hbs) in cereals. This work reports the cloning and analysis of hb genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis). Coding sequences of maize and teosinte hb genes (hbm and hbt, respectively) are highly similar to each other and are interrupted by three introns located at identical positions as other plant hb genes. Sequences of predicted Hbm and Hbt proteins are identical. The hydropathic profile of Hbm and Hbt is highly similar to that of rice Hb1, suggesting that Hbm, Hbt and Hb1 have the same tertiary structure and biochemical properties. Expression analysis showed that low levels of Hb transcripts, but considerable levels of Hb proteins exist in maize embryonic organs. No Hb transcripts and proteins were detected in teosinte embryonic organs. Low levels of Hb proteins, but no Hb transcripts, were detected in maize and teosinte vegetative organs. These observations suggest that the regulation of hb genes is different in maize and teosinte embryonic organs, and that the expression of hb genes is down- or up-regulated in maize and teosinte, respectively, from germination to vegetative growing

    Serum human chorionic gonadotropin is associated with angiogenesis in germ cell testicular tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germ cell testicular tumors have survival rate that diminishes with high tumor marker levels, such as human chorionic gonadotropin (hCG). hCG may regulate vascular neoformation through vascular endothelial growth factor (VEGF). Our purpose was to determine the relationship between hCG serum levels, angiogenesis, and VEGF expression in germ cell testicular tumors.</p> <p>Methods</p> <p>We conducted a retrospective study of 101 patients. Serum levels of hCG, alpha-fetoprotein (AFP), and lactate dehydrogenase were measured prior to surgery. Vascular density (VD) and VEGF tissue expression were determined by immunohistochemistry and underwent double-blind analysis.</p> <p>Results</p> <p>Histologically, 46% were seminomas and 54%, non-seminomas. Median follow-up was 43 ± 27 months. Relapse was present in 7.5% and mortality in 11.5%. Factors associated with high VD included non-seminoma type (<it>p </it>= 0.016), AFP ≄ 14.7 ng/mL (<it>p </it>= 0.0001), and hCG ≄ 25 mIU/mL (<it>p </it>= 0.0001). In multivariate analysis, the only significant VD-associated factor was hCG level (<it>p </it>= 0.04). When hCG levels were stratified, concentrations ≄ 25 mIU/mL were related with increased neovascularization (<it>p </it>< 0.0001). VEGF expression was not associated with VD or hCG serum levels.</p> <p>Conclusion</p> <p>This is the first study that relates increased serum hCG levels with vascularization in testicular germ cell tumors. Hence, its expression might play a role in tumor angiogenesis, independent of VEGF expression, and may explain its association with poor prognosis. hCG might represent a molecular target for therapy.</p

    Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    Get PDF
    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-ÎșB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer

    Molecular Characterization of Patients with Cryptorchidism: Preliminary Search for an Expression Profile Related to That of Testicular Germ-Cell Tumors

    No full text
    Cryptorchidism (CO) is a risk factor for the development of testicular germ-cell tumors (TGCT). This is supported by reports showing the persistence of gonocytes in CO patients. These cells are proposed to be related to the development of germ-cell neoplasia in situ (GCNIS), which is considered the precursor stage/lesion of TGCT. Therefore, it is proposed that some patients with CO could express some molecular markers related to TGCT. In this study, we analyzed testicular tissue samples from CO, TGCT, and controls. We determined the expression of POU5F1, PLAP, and KIT by immunohistochemistry and that of the hsa-miR-371-373 cluster, hsa-miR-367, and LATS2, PTEN, and IGFR1 genes by RT-qPCR. We then carried out a bioinformatic analysis to identify other possible candidate genes as tumor biomarkers. We found that 16.7% (2/12) of the CO patients presented increased expression of POU5F1, KIT, PLAP, hsa-miR-371-373, and hsa-miR-367 and decreased expression of LATS2 and IGF1R. Finally, the genes ARID4B, GALNT3, and KPNA6 were identified as other possible candidate tumor biomarkers. This is the first report describing the expression of the hsa-miR-371-373 cluster, hsa-miR-367, LATS2, and IGF1R in the testicular tissues of two CO patients with cells immune-positive to POU5F1, PLAP, and KIT, which is similar to what is observed in TGCT
    corecore