12 research outputs found

    Transformation of plant substrates by fungi

    No full text
    The results of chemical and thermal analysis of substrates based on the post-extraction residue of balsam poplar (Populus balsamifera L.) buds before and after bioconversion by Fp5-15 Fomitopsis pinicola fungi were compared. The thermal characteristics obtained using thermogravimetry (TG/DTG) methods are presented. The stages of thermal decomposition, their temperature intervals and the temperatures of the maxima on the DTG curves, as well as the weight loss of the samples, have been established. Studies have shown that under the action of the enzyme complex of fungi, easily and difficultly hydrolysable polysaccharides are utilized, and lignin substances also undergo changes

    Conjugates of Chitosan with β-Cyclodextrins as Promising Carriers for the Delivery of Levofloxacin: Spectral and Microbiological Studies

    No full text
    In this work, we synthesized chitosan 5 kDa conjugates with β-cyclodextrins with various substituents as promising mucoadhesive carriers for the delivery of fluoroquinolones using the example of levofloxacin. The obtained conjugates were comprehensively characterized by spectral methods (UV-Vis, ATR-FTIR, 1H NMR, SEM). The physico-chemical properties of the complex formations were studied by IR, UV, and fluorescence spectroscopy. The dissociation constants of complexes with levofloxacin were determined. Complexation with conjugates provided four times slower drug release in comparison with plain CD and more than 20 times in comparison with the free drug. The antibacterial activity of the complexes was tested on model microorganisms Gram-negative bacteria Escherichia coli ATCC 25922 and Gram-positive Bacillus subtilis ATCC 6633. The complex with the conjugate demonstrated the same initial levofloxacin antibacterial activity but provided significant benefits, e.g., prolonged release

    Cholesterol Significantly Affects the Interactions between Pirfenidone and DPPC Liposomes: Spectroscopic Studies

    No full text
    In this work, we studied the effect of as on the interaction of membrane DPPC with the key antifibrotic drug pirfenidone. Liposomal forms of pirfenidone were obtained using passive loading. The addition of cholesterol reduces the loading efficiency of pirfenidone by 10%. The main binding site of pirfenidone in DPPC liposomes is the carbonyl group: the interaction with PF significantly increases the proportion of low-hydrated carbonyl groups as revealed by ATR-FTIR spectroscopy. The phosphate group acts as an additional binding site; however, due to shielding by the choline group, this interaction is weak. The hydrophobic part of the bilayer is not involved in PF binding at room temperature. Cholesterol changes the way of interaction between carbonyl groups and pirfenidone probably because of the formation of two subpopulations of DPPC and causes a dramatic redistribution of carbonyl groups onto the degrees of hydration. The proportion of moderately hydrated carbonyl groups increases, apparently due to the deepening of pirfenidone into the circumpolar region of the bilayer. For the first time, a change in the microenvironment of pirfenidone upon binding to liposomes was shown: aromatic moiety interacts with the bilayer

    Conjugates of Chitosan with Ξ²-Cyclodextrins as Promising Carriers for the Delivery of Levofloxacin: Spectral and Microbiological Studies

    No full text
    In this work, we synthesized chitosan 5 kDa conjugates with Ξ²-cyclodextrins with various substituents as promising mucoadhesive carriers for the delivery of fluoroquinolones using the example of levofloxacin. The obtained conjugates were comprehensively characterized by spectral methods (UV-Vis, ATR-FTIR, 1H NMR, SEM). The physico-chemical properties of the complex formations were studied by IR, UV, and fluorescence spectroscopy. The dissociation constants of complexes with levofloxacin were determined. Complexation with conjugates provided four times slower drug release in comparison with plain CD and more than 20 times in comparison with the free drug. The antibacterial activity of the complexes was tested on model microorganisms Gram-negative bacteria Escherichia coli ATCC 25922 and Gram-positive Bacillus subtilis ATCC 6633. The complex with the conjugate demonstrated the same initial levofloxacin antibacterial activity but provided significant benefits, e.g., prolonged release

    Cholesterol Significantly Affects the Interactions between Pirfenidone and DPPC Liposomes: Spectroscopic Studies

    No full text
    In this work, we studied the effect of as on the interaction of membrane DPPC with the key antifibrotic drug pirfenidone. Liposomal forms of pirfenidone were obtained using passive loading. The addition of cholesterol reduces the loading efficiency of pirfenidone by 10%. The main binding site of pirfenidone in DPPC liposomes is the carbonyl group: the interaction with PF significantly increases the proportion of low-hydrated carbonyl groups as revealed by ATR-FTIR spectroscopy. The phosphate group acts as an additional binding site; however, due to shielding by the choline group, this interaction is weak. The hydrophobic part of the bilayer is not involved in PF binding at room temperature. Cholesterol changes the way of interaction between carbonyl groups and pirfenidone probably because of the formation of two subpopulations of DPPC and causes a dramatic redistribution of carbonyl groups onto the degrees of hydration. The proportion of moderately hydrated carbonyl groups increases, apparently due to the deepening of pirfenidone into the circumpolar region of the bilayer. For the first time, a change in the microenvironment of pirfenidone upon binding to liposomes was shown: aromatic moiety interacts with the bilayer

    Vliyanie glimepirida (Amarila) na sostoyanie lipidnogo obmena, perekisnoe okislenie lipidov i insulinrezistentnost'

    No full text
    ЦСль. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния Амарила Π½Π° ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Ρ‹ΠΉ ΠΈ Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹ΠΉ ΠΎΠ±ΠΌΠ΅Π½Ρ‹, пСрСкисноС окислСниС Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² (ΠŸΠžΠ›), Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² антиоксидантной Π·Π°Ρ‰ΠΈΡ‚Ρ‹, ΠΈΠ½ΡΡƒΠ»ΠΈΠ½ΠΎΡ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΠ΅ΠΊΡ€Π΅Ρ‚ΠΎΡ€Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π±Π΅Ρ‚Π°-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ОбслСдовано 30 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, ΡΡ‚Ρ€Π°Π΄Π°ΡŽΡ‰ΠΈΡ… Π‘Π” Ρ‚ΠΈΠΏΠ° 2. ПослС обслСдования 16 Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π° тСрапия Амарилом Π² суточной Π΄ΠΎΠ·Π΅ 1 ΠΌΠ³; 7 Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ? 2 ΠΌΠ³, 6 ? 3 ΠΌΠ³ ΠΈ 1 Π±ΠΎΠ»ΡŒΠ½ΠΎΠΌΡƒ ? Π² суточной Π΄ΠΎΠ·Π΅ 0,5 ΠΌΠ³. Π£ΠΊΠ°Π·Π°Π½Π½ΡƒΡŽ Π΄ΠΎΠ·Ρƒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π±ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ Π² ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΈΠ΅ΠΌ ? ΡƒΡ‚Ρ€ΠΎΠΌ ΠΏΠ΅Ρ€Π΅Π΄ Π·Π°Π²Ρ‚Ρ€Π°ΠΊΠΎΠΌ. 2-я Π³Ρ€ΡƒΠΏΠΏΠ° (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ) Π±Ρ‹Π»Π° прСдставлСна 30 Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π‘Π” Ρ‚ΠΈΠΏΠ° 2 ΠΈ находящимися Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 3 мСс Π½Π° Π΄ΠΈΠ΅Ρ‚ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ примСнСния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Амарил ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»Π°ΡΡŒ ΠΏΠΎ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ компСнсации Π‘Π”, ΡƒΡ€ΠΎΠ²Π½ΡŽ НЫАс (Π΄ΠΎ Π½Π°Ρ‡Π°Π»Π° Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΈ Ρ‡Π΅Ρ€Π΅Π· 3 мСс Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ лСчСния), Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΠΈ Π½Π°Ρ‚ΠΎΡ‰Π°ΠΊ (Π“ΠŸΠ) ΠΈ Ρ‡Π΅Ρ€Π΅Π· 2 Ρ‡ послС ΠΏΡ€ΠΈΠ΅ΠΌΠ° ΠΏΠΈΡ‰ΠΈ, частотС случаСв ΠΊΠ΅Ρ‚ΠΎΠ°Ρ†ΠΈΠ΄ΠΎΠ·Π° ΠΈ гипогликСмичСских состояний, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ инсулина (ИРИ) ΠΈ Π‘-ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π° Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π›Π΅Ρ‡Π΅Π½ΠΈΠ΅ Амарилом Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π‘Π” Ρ‚ΠΈΠΏΠ° 2 способствовало достовСрному сниТСнию ΠΊΠ°ΠΊ Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΠΈ Π½Π°Ρ‚ΠΎΡ‰Π°ΠΊ, Ρ‚Π°ΠΊ ΠΈ содСрТания Π³Π»ΠΈΠΊΠΎΠ³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° Π² ΠΊΡ€ΠΎΠ²ΠΈ, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΠΏΠΎΠ΄ влияниСм Π΄ΠΈΠ΅Ρ‚ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ достовСрноС сниТСниС Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΠΈ. БостояниС компСнсации ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π‘Π” Ρ‚ΠΈΠΏΠ° 2 Π½Π° Ρ„ΠΎΠ½Π΅ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Амарилом ΠΈΠ»ΠΈ Π΄ΠΈΠ΅Ρ‚ΠΎΠΉ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±Π΅Ρ‚Π°-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹. Π£ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π‘Π” Ρ‚ΠΈΠΏΠ° 2, находящихся Π½Π° Π΄ΠΈΠ΅Ρ‚Π΅, ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ уровня Π‘-ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π° Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ достовСрном сниТСнии содСрТания ИРИ, Ρ‡Ρ‚ΠΎ являСтся ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ пСрифСричСских Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΊ инсулину. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. На основании ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ тСрапия (Π±ΠΎΠ»Π΅Π΅ 3 мСс.) Амарилом ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ стойкой компСнсации ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π‘Π” Ρ‚ΠΈΠΏΠ° 2, Ρ‡Ρ‚ΠΎ сопровоТдаСтся сниТСниСм содСрТания Π³Π»ΡŽΠΊΠΎΠ·Ρ‹ ΠΈ HbA1c Π² ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ уровня Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ИРИ ΠΈ Π‘-ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π° Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ

    Avandiya ostaetsya odnim iz preparatov vybora v lechenii sakharnogo diabeta 2 tipa

    No full text
    ЦСль. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ состояния ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ, Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½ΠΎΠ² ΠΈ сСкрСции Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ² ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π½Π° Ρ„ΠΎΠ½Π΅ лСчСния АвандиСй (росиглитазоном). ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ОбслСдовано 42 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… (30 ΠΆΠ΅Π½Ρ‰ΠΈΠ½ ΠΈ 12 ΠΌΡƒΠΆΡ‡ΠΈΠ½) Π² возрастС 62,44?7,69 Π»Π΅Ρ‚, ΡΡ‚Ρ€Π°Π΄Π°ΡŽΡ‰ΠΈΡ… Π‘Π” 2 с Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ заболСвания 6,08?3,95 Π»Π΅Ρ‚. Π”ΠΎ ΠΈ Ρ‡Π΅Ρ€Π΅Π· 3 мСс послС окончания наблюдСния всСм Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ клиничСскоС ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠ΅ обслСдованиС, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ: ΠΎΠ±Ρ‰ΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΊΡ€ΠΎΠ²ΠΈ ΠΈ ΠΌΠΎΡ‡ΠΈ, биохимичСскоС исслСдованиС ΠΊΡ€ΠΎΠ²ΠΈ (гликСмия, Π»ΠΈΠΏΠΈΠ΄Ρ‹, ΠΏΠ΅Ρ‡Π΅Π½ΠΎΡ‡Π½Ρ‹Π΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, элСктролиты), ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π°; ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ масса ΠΈ индСкс массы Ρ‚Π΅Π»Π° (ИМВ), ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ объСма Ρ‚Π°Π»ΠΈΠΈ ΠΊ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ Π±Π΅Π΄Π΅Ρ€. На ΠΏΠ΅Ρ€Π²ΠΎΠΌ Π²ΠΈΠ·ΠΈΡ‚Π΅ ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Π·Π½Π°Ρ‡Π°Π»Π°ΡΡŒ Авандия (4 ΠΌΠ³ Π² сутки). На Π²Ρ‚ΠΎΡ€ΠΎΠΌ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²ΠΈΠ·ΠΈΡ‚Π°Ρ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π³Π»ΡŽΠΊΠΎΠ·Ρ‹ Π΄ΠΎ ΠΈ Ρ‡Π΅Ρ€Π΅Π· 2 часа послС ΠΏΡ€ΠΈΠ΅ΠΌΠ° ΠΏΠΈΡ‰ΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ состоянии ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° являлись основаниСм для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π²ΠΈΠ·ΠΈΡ‚Π΅. На 3-ΠΌ ΠΈ 4-ΠΌ Π²ΠΈΠ·ΠΈΡ‚Π°Ρ… Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв ΠΎΡ‚ΠΌΠ΅Π½ΡΠ»Π°ΡΡŒ проводимая Ρ€Π°Π½Π΅Π΅ тСрапия, Π° Π΄ΠΎΠ·Π° Π°Π²Π°Π½Π΄ΠΈΠΈ Π² случаС нСобходимости ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»Π°ΡΡŒ Π΄ΠΎ 8 ΠΌΠ³ Π² сутки. На 5-ΠΌ Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π²ΠΈΠ·ΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ ΠΏΠΎΠ»Π½ΠΎΠ΅ клиничСскоС ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠ΅ обслСдованиС. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. На Ρ„ΠΎΠ½Π΅ ΠΏΡ€ΠΈΠ΅ΠΌΠ° Авандии ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ содСрТания ΠΎΠ±Ρ‰Π΅Π³ΠΎ холСстСрина Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ с 5,69?0,9 Π΄ΠΎ 6,2?1,13 ммоль/Π». Π£Π»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ клиничСского состояния Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ сниТСниСм массы Ρ‚Π΅Π»Π° с 86,63?13,68 Π΄ΠΎ 85,44?12,74 ΠΊΠ³. Ρƒ обслСдованных Π½Π°ΠΌΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π½Π° Ρ„ΠΎΠ½Π΅ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ АвандиСй наблюдалось ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π°, Ρ‡Ρ‚ΠΎ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ сниТСниСм уровня Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° ΠΈ Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΠΈ Π½Π°Ρ‚ΠΎΡ‰Π°ΠΊ. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Росиглитазон остаСтся срСди ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², примСняСмых для лСчСния Π‘Π” 2, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ польза ΠΎΡ‚ Π΅Π³ΠΎ примСнСния Π½Π°ΠΌΠ½ΠΎΠ³ΠΎ прСвосходит риск развития ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… сСрдСчно-сосудистых Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, приводящих ΠΊ Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌΡƒ исходу. ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ вопроса ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΌ Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ росиглитазона для Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ больного Π‘Π” 2 Π²Ρ€Π°Ρ‡ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ противопоказания для примСнСния росиглитазона (Авандия), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ пСрСчислСны Π² ΠΏΡ€ΠΈΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΠΊ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρƒ инструкции

    Methods of synthesizing glycoluril-based macrocyclic compounds as precursors for polymeric compounds

    No full text
    This review study considers the classification of data on synthesis methods and practically valuable features of glycoluril-based macrocyclic nitrogen-containing compounds as precursors for polymeric compounds. General data about glycoluril and tetra-N-hydroxymethylglycoluril as parental bases for various macrocyclic compounds were considered. Generalized experimental facts about methods for glycoluril direct N-functionalization and its N-hydroxymethyl derivative reactions in macrocycles and polymeric compound synthesis are given

    A Gene Encoding l-Methionine Ξ³-Lyase Is Present in Enterobacteriaceae Family Genomes: Identification and Characterization of Citrobacter freundii l-Methionine Ξ³-Lyase

    No full text
    Citrobacter freundii cells produce l-methionine Ξ³-lyase when grown on a medium containing l-methionine. The nucleotide sequence of the hybrid plasmid with a C. freundii EcoRI insert of about 3.0 kbp contained two open reading frames, consisting of 1,194 nucleotides and 1,296 nucleotides, respectively. The first one (denoted megL) encoded l-methionine Ξ³-lyase. The enzyme was overexpressed in Escherichia coli and purified. The second frame encoded a protein belonging to the family of permeases. Regions of high sequence identity with the 3β€²-terminal part of the C. freundii megL gene located in the same regions of Salmonella enterica serovar Typhimurium, Shigella flexneri, E. coli, and Citrobacter rodentium genomes were found
    corecore