5 research outputs found

    Effect of Reduction of Redox Modifications of Cys-Residues in the Na,K-ATPase α1-Subunit on Its Activity

    No full text
    Sodium-potassium adenosine triphosphatase (Na,K-ATPase) creates a gradient of sodium and potassium ions necessary for the viability of animal cells, and it is extremely sensitive to intracellular redox status. Earlier we found that regulatory glutathionylation determines Na,K-ATPase redox sensitivity but the role of basal glutathionylation and other redox modifications of cysteine residues is not clear. The purpose of this study was to detect oxidized, nitrosylated, or glutathionylated cysteine residues in Na,K-ATPase, evaluate the possibility of removing these modifications and assess their influence on the enzyme activity. To this aim, we have detected such modifications in the Na,K-ATPase α1-subunit purified from duck salt glands and tried to eliminate them by chemical reducing agents and the glutaredoxin1/glutathione reductase enzyme system. Detection of cysteine modifications was performed using mass spectrometry and Western blot analysis. We have found that purified Na,K-ATPase α1-subunit contains glutathionylated, nitrosylated, and oxidized cysteines. Chemical reducing agents partially eliminate these modifications that leads to the slight increase of the enzyme activity. Enzyme system glutaredoxin/glutathione reductase, unlike chemical reducing agents, produces significant increase of the enzyme activity. At the same time, the enzyme system deglutathionylates native Na,K-ATPase to a lesser degree than chemical reducing agents. This suggests that the enzymatic reducing system glutaredoxin/glutathione reductase specifically affects glutathionylation of the regulatory cysteine residues of Na,K-ATPase α1-subunit

    Direct interaction of beta-amyloid with Na,K-ATPase as a putative regulator of the enzyme function

    Get PDF
    By maintaining the Na(+) and K(+) transmembrane gradient mammalian Na,K-ATPase acts as a key regulator of neuronal electrotonic properties. Na,K-ATPase has an important role in synaptic transmission and memory formation. Accumulation of beta-amyloid (Aβ) at the early stages of Alzheimer's disease is accompanied by reduction of Na,K-ATPase functional activity. The molecular mechanism behind this phenomenon is not known. Here we show that the monomeric Aβ(1-42) forms a tight (Kd of 3 μM), enthalpy-driven equimolar complex with α1β1 Na,K-ATPase. The complex formation results in dose-dependent inhibition of the enzyme hydrolytic activity. The binding site of Aβ(1-42) is localized in the "gap" between the alpha- and beta-subunits of Na,K-ATPase, disrupting the enzyme functionality by preventing the subunits from shifting towards each other. Interaction of Na,K-ATPase with exogenous Aβ(1-42) leads to a pronounced decrease of the enzyme transport and hydrolytic activity and Src-kinase activation in neuroblastoma cells SH-SY5Y. This interaction allows regulation of Na,K-ATPase activity by short-term increase of the Aβ(1-42) level. However prolonged increase of Aβ(1-42) level under pathological conditions could lead to chronical inhibition of Na,K-ATPase and disruption of neuronal function. Taken together, our data suggest the role of beta-amyloid as a novel physiological regulator of Na,K-ATPase

    Unusual Cytochrome c552 from Thioalkalivibrio paradoxus: Solution NMR Structure and Interaction with Thiocyanate Dehydrogenase

    No full text
    The search of a putative physiological electron acceptor for thiocyanate dehydrogenase (TcDH) newly discovered in the thiocyanate-oxidizing bacteria Thioalkalivibrio paradoxus revealed an unusually large, single-heme cytochrome c (CytC552), which was co-purified with TcDH from the periplasm. Recombinant CytC552, produced in Escherichia coli as a mature protein without a signal peptide, has spectral properties similar to the endogenous protein and serves as an in vitro electron acceptor in the TcDH-catalyzed reaction. The CytC552 structure determined by NMR spectroscopy reveals significant differences compared to those of the typical class I bacterial cytochromes c: a high solvent accessible surface area for the heme group and so-called “intrinsically disordered” nature of the histidine-rich N- and C-terminal regions. Comparison of the signal splitting in the heteronuclear NMR spectra of oxidized, reduced, and TcDH-bound CytC552 reveals the heme axial methionine fluxionality. The TcDH binding site on the CytC552 surface was mapped using NMR chemical shift perturbations. Putative TcDH-CytC552 complexes were reconstructed by the information-driven docking approach and used for the analysis of effective electron transfer pathways. The best pathway includes the electron hopping through His528 and Tyr164 of TcDH, and His83 of CytC552 to the heme group in accordance with pH-dependence of TcDH activity with CytC552

    Unusual Cytochrome c552 from Thioalkalivibrio paradoxus: Solution NMR Structure and Interaction with Thiocyanate Dehydrogenase

    No full text
    The search of a putative physiological electron acceptor for thiocyanate dehydrogenase (TcDH) newly discovered in the thiocyanate-oxidizing bacteria Thioalkalivibrio paradoxus revealed an unusually large, single-heme cytochrome c (CytC552), which was co-purified with TcDH from the periplasm. Recombinant CytC552, produced in Escherichia coli as a mature protein without a signal peptide, has spectral properties similar to the endogenous protein and serves as an in vitro electron acceptor in the TcDH-catalyzed reaction. The CytC552 structure determined by NMR spectroscopy reveals significant differences compared to those of the typical class I bacterial cytochromes c: a high solvent accessible surface area for the heme group and so-called “intrinsically disordered” nature of the histidine-rich N- and C-terminal regions. Comparison of the signal splitting in the heteronuclear NMR spectra of oxidized, reduced, and TcDH-bound CytC552 reveals the heme axial methionine fluxionality. The TcDH binding site on the CytC552 surface was mapped using NMR chemical shift perturbations. Putative TcDH-CytC552 complexes were reconstructed by the information-driven docking approach and used for the analysis of effective electron transfer pathways. The best pathway includes the electron hopping through His528 and Tyr164 of TcDH, and His83 of CytC552 to the heme group in accordance with pH-dependence of TcDH activity with CytC552

    Kynurenic Acid Restores Nrf2 Levels and Prevents Quinolinic Acid-Induced Toxicity in Rat Striatal Slices

    No full text
    Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites produced in the degradation of tryptophan and have important neurological activities. KYNA/QUIN ratio changes are known to be associated with central nervous system disorders, such Alzheimer, Parkinson, and Huntington diseases. In the present study, we investigate the ability of KYNA in prevent the first events preceding QUIN-induced neurodegeneration in striatal slices of rat. We evaluated the protective effect of KYNA on oxidative status (reactive oxygen species production, antioxidant enzymes activities, lipid peroxidation, nitrite levels, protein and DNA damage, and iNOS immunocontent), mitochondrial function (mitochondrial mass, membrane potential, and respiratory chain enzymes), and Na+,K+-ATPase in striatal slices of rats treated with QUIN. Since QUIN alters the levels of Nrf2, we evaluated the influence of KYNA protection on this parameter. Striatal slices from 30-day-old Wistar rats were preincubated with KYNA (100 μM) for 15 min, followed by incubation with 100-μM QUIN for 30 min. Results showed that KYNA prevented the increase of ROS production caused by QUIN and restored antioxidant enzyme activities and the protein and lipid damage, as well as the Nrf2 levels. KYNA also prevented the effects of QUIN on mitochondrial mass and mitochondrial membrane potential, as well as the decrease in the activities of complex II, SDH, and Na+,K+-ATPase. We suggest that KYNA prevents changes in Nrf2 levels, oxidative imbalance, and mitochondrial dysfunction caused by QUIN in striatal slices. This study elucidates some of the protective effects of KYNA against the damage caused by QUIN toxicity
    corecore