6 research outputs found
Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort
BACKGROUND:
Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice.
METHODS:
A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively.
RESULTS:
SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655.
CONCLUSIONS:
In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin
<i>Metarhizium</i> Associated with Coffee Seedling Roots: Positive Effects on Plant Growth and Protection against <i>Leucoptera coffeella</i>
Metarhizium species can be mutualistic symbionts of plants. They are able to colonize roots, promote plant growth and provide protection against pests. We previously found Metarhizium robertsii and M. brunneum associated with coffee roots in a diversified coffee system. Here, we investigated whether these fungi, when inoculated in coffee seedlings, can associate with roots, improve seedling growth and indirectly protect against the coffee leaf miner (CLM) Leucoptera coffeella (Lepidoptera: Lyonetiidae). We performed a greenhouse experiment with coffee seedlings using suspensions of each Metarhizium species applied as soil drenches to potted seedlings. We also challenged these plants with CLM infestation (two adult couples per plant). We recovered Metarhizium spp. from most of the seedling roots 43 days after fungal inoculation. Plants inoculated with M. robertsii showed a 30% leaf area increase compared to the control. Both isolates promoted protection against CLM in coffee seedlings, reducing the percentual of leaf area mined and prolonging CLM development time by two days versus controls. Besides this protection provided by Metarhizium, M. robertsii also improves seedling growth. Therefore, these Metarhizium species could be considered for the development of inoculants for coffee seedlings
Intercropped Plants Provide a Reservoir of Predatory Mites in Coffee Crop
Conservation biological control of pests may be achieved using a variety of integrated strategies based on crop diversification. We investigated whether the insertion of the intercropped plants species (IPS) Inga edulis, Senna macranthera, and Varronia curassavica modified the abundance of mites, their feeding behavior, and the dissimilarity of predator and herbivore mites over a gradient of distance from the IPS on coffee. To accomplish this, we recorded the mite species on coffee plants along transects of 16 m extending from the IPS, including on the IPS. A total of 8946 specimens were sampled. Tenuipalpidae was the most abundant family on coffee, followed by Tydeidae, while Eriophyidae was the most abundant on the IPS, followed by Phytoseiidae. The abundance and richness of mites differed between their feeding behavior and distance. The dissimilarity of predators and herbivores increased along a gradient of distance. Furthermore, the IPS harbored several mite species and the diversity of predator and herbivore mites among the IPS was different. The findings suggest that the intercropped plant species can attract and serve as a reservoir of predatory mites on coffee crops, which could improve the biocontrol of pest mites on coffee
Intercropped Plants Provide a Reservoir of Predatory Mites in Coffee Crop
Conservation biological control of pests may be achieved using a variety of integrated strategies based on crop diversification. We investigated whether the insertion of the intercropped plants species (IPS) Inga edulis, Senna macranthera, and Varronia curassavica modified the abundance of mites, their feeding behavior, and the dissimilarity of predator and herbivore mites over a gradient of distance from the IPS on coffee. To accomplish this, we recorded the mite species on coffee plants along transects of 16 m extending from the IPS, including on the IPS. A total of 8946 specimens were sampled. Tenuipalpidae was the most abundant family on coffee, followed by Tydeidae, while Eriophyidae was the most abundant on the IPS, followed by Phytoseiidae. The abundance and richness of mites differed between their feeding behavior and distance. The dissimilarity of predators and herbivores increased along a gradient of distance. Furthermore, the IPS harbored several mite species and the diversity of predator and herbivore mites among the IPS was different. The findings suggest that the intercropped plant species can attract and serve as a reservoir of predatory mites on coffee crops, which could improve the biocontrol of pest mites on coffee
ABC<sub>2</sub>-SPH risk score for in-hospital mortality in COVID-19 patients
Objectives: The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Methods: Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March–July, 2020. The model was validated in the 1054 patients admitted during August–September, as well as in an external cohort of 474 Spanish patients. Results: Median (25–75th percentile) age of the model-derivation cohort was 60 (48–72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO2/FiO2 ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829–0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833–0.885]) and Spanish (0.894 [95% CI 0.870–0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). Conclusions: An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19.</p
ABC-SPH risk score for in-hospital mortality in COVID-19 patients : development, external validation and comparison with other available scores
The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March-July, 2020. The model was validated in the 1054 patients admitted during August-September, as well as in an external cohort of 474 Spanish patients. Median (25-75th percentile) age of the model-derivation cohort was 60 (48-72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO/FiO ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829-0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833-0.885]) and Spanish (0.894 [95% CI 0.870-0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19