6 research outputs found

    Study of a novel material solution for vibration isolation

    Get PDF
    Vibration isolation is an important requirement for many engineering systems. In particular, in the context of vibration isolation for light-weight automotive vehicles that exhibit wide variation in sprung mass, several limitations are associated with passive isolation systems. Such passive systems cannot obtain wide variations in the suspension parameters which required for reliable performance. While these technical drawbacks can be overcome by implementing active systems, these are associated with an increase in complexity, cost and potentially negative impact on reliability. In this context, composite fluid materials, which combine different components in a way that enhances an isolator’s performance, could represent a possible alternative approach with promising potential. However, the application of composite fluid materials for vibration isolations is still an underdeveloped area. The composite fluid material that is the subject of this research is referred to as Foam Filled Fluid (FFFluid). It is composed of three components, namely compressible (foam) particles, a viscous carrier fluid and a packaging material. This composite material has recently been investigated for applications in impact energy management but is not understood in anti-vibration application. Thus, the objective of this research was to understand the mechanisms, to characterise design parameters and to predict the responses of such composite material when used for vibration isolation systems. A theoretical understanding of the working principle for a FFFluid-based isolator was first achieved. Then, experimental work was conducted to assess the performance of such a device. The characterisation of the composite material was carried out via a systematic study; this study was then validated by an experimental -ivprogramme based on a Design of Experiments approach. Finally, empirical prediction models of the system were extracted by analysing the obtained data statistically. The conducted research shows that a FFFluid-based isolator possesses several advantages over commonly used existing solutions. Its main benefit is the potential capability of adjusting stiffness and damping coefficients by changing one component or more of this composite material. It was shown that increasing the volume of the composite material led to increased stiffness and damping coefficients. Besides, increasing the ratio of fluid in the mixture caused to increase the stiffness coefficient. The most important parameters that have an influence on the response of FFFluid were: the size of foam, the ratio of foam to fluid, volume of the material and fluid viscosity. Therefore, empirical models were established based on these parameters, the accuracy of these models were 85% Through the study of this novel material, the application of the FFFluid concept as a vibration isolator solution was studied. In practice, the design parameters of such a system could be adjusted through a control mechanism, to provide an adaptive solution. This could represent a suitable means to bridge the gap between passive and active suspension system in the context of vibration isolation for light-weight vehicles

    Study of a novel material solution for vibration isolation

    Get PDF
    Vibration isolation is an important requirement for many engineering systems. In particular, in the context of vibration isolation for light-weight automotive vehicles that exhibit wide variation in sprung mass, several limitations are associated with passive isolation systems. Such passive systems cannot obtain wide variations in the suspension parameters which required for reliable performance. While these technical drawbacks can be overcome by implementing active systems, these are associated with an increase in complexity, cost and potentially negative impact on reliability. In this context, composite fluid materials, which combine different components in a way that enhances an isolator’s performance, could represent a possible alternative approach with promising potential. However, the application of composite fluid materials for vibration isolations is still an underdeveloped area. The composite fluid material that is the subject of this research is referred to as Foam Filled Fluid (FFFluid). It is composed of three components, namely compressible (foam) particles, a viscous carrier fluid and a packaging material. This composite material has recently been investigated for applications in impact energy management but is not understood in anti-vibration application. Thus, the objective of this research was to understand the mechanisms, to characterise design parameters and to predict the responses of such composite material when used for vibration isolation systems. A theoretical understanding of the working principle for a FFFluid-based isolator was first achieved. Then, experimental work was conducted to assess the performance of such a device. The characterisation of the composite material was carried out via a systematic study; this study was then validated by an experimental -ivprogramme based on a Design of Experiments approach. Finally, empirical prediction models of the system were extracted by analysing the obtained data statistically. The conducted research shows that a FFFluid-based isolator possesses several advantages over commonly used existing solutions. Its main benefit is the potential capability of adjusting stiffness and damping coefficients by changing one component or more of this composite material. It was shown that increasing the volume of the composite material led to increased stiffness and damping coefficients. Besides, increasing the ratio of fluid in the mixture caused to increase the stiffness coefficient. The most important parameters that have an influence on the response of FFFluid were: the size of foam, the ratio of foam to fluid, volume of the material and fluid viscosity. Therefore, empirical models were established based on these parameters, the accuracy of these models were 85% Through the study of this novel material, the application of the FFFluid concept as a vibration isolator solution was studied. In practice, the design parameters of such a system could be adjusted through a control mechanism, to provide an adaptive solution. This could represent a suitable means to bridge the gap between passive and active suspension system in the context of vibration isolation for light-weight vehicles

    Investigation of the Foam Filled Fluid Technology for Anti-Vibration Devices

    No full text
    In this study, Foam Filled Fluid (FFFluid) technology was investigated for the design of a novel vibration isolator, which is referred to as an FFFluid isolator. This technology relies on the utilisation of both the strain of foam capsules and fluid motion for reducing unwanted vibrations. Such an FFFluid isolator basically consists of compressible elastic particles of foam, mixed with an incompressible fluid while this mixture is contained in a controlled volume. When the FFFluid isolator is affected by vibrations, energy is absorbed due to the elastic strain of the foam. As the foam strain also enables movement of the fluid, this contributes to further energy absorption due swirling and the viscous effect of the fluid. The packaging could also contribute to attenuate vibration through the generated friction between the piston and the cylinder used to contain the FFFluid. Former studies showed that promising performances in reducing unwanted forces can be achieved with shock absorbing devices using the FFFluid technology. Such studies also highlighted the importance of defining key parameters of FFFluid devices properly. The present study was focused on characterising the FFFluid technology for vibration isolation. The performance of the system was determined based on experimental data in order to assess the stiffness and damping coefficients of the developed device

    Investigation of the foam filled fluid technology for anti-vibration devices

    No full text
    In this study, Foam Filled Fluid (FFFluid) technology was investigated for the design of a novel vibration isolator, which is referred to as an FFFluid isolator. This technology relies on the utilisation of both the strain of foam capsules and fluid motion for reducing unwanted vibrations. Such an FFFluid isolator basically consists of compressible elastic particles of foam, mixed with an incompressible fluid while this mixture is contained in a controlled volume. When the FFFluid isolator is affected by vibrations, energy is absorbed due to the elastic strain of the foam. As the foam strain also enables movement of the fluid, this contributes to further energy absorption due swirling and the viscous effect of the fluid. The packaging could also contribute to attenuate vibration through the generated friction between the piston and the cylinder used to contain the FFFluid. Former studies showed that promising performances in reducing unwanted forces can be achieved with shock absorbing devices using the FFFluid technology. Such studies also highlighted the importance of defining key parameters of FFFluid devices properly. The present study was focused on characterising the FFFluid technology for vibration isolation. The performance of the system was determined based on experimental data in order to assess the stiffness and damping coefficients of the developed device

    Proceedings of First Conference for Engineering Sciences and Technology: Vol. 2

    No full text
    This volume contains contributed articles of Track 4, Track 5 & Track 6, presented in the conference CEST-2018, organized by Faculty of Engineering Garaboulli, and Faculty of Engineering, Al-khoms, Elmergib University (Libya) on 25-27 September 2018. Track 4: Industrial, Structural Technologies and Science Material Track 5: Engineering Systems and Sustainable Development Track 6: Engineering Management Other articles of Track 1, 2 & 3 have been published in volume 1 of the proceedings at this lin
    corecore