354 research outputs found

    Evidence against a glass transition in the 10-state short range Potts glass

    Full text link
    We present the results of Monte Carlo simulations of two different 10-state Potts glasses with random nearest neighbor interactions on a simple cubic lattice. In the first model the interactions come from a \pm J distribution and in the second model from a Gaussian one, and in both cases the first two moments of the distribution are chosen to be equal to J_0=-1 and Delta J=1. At low temperatures the spin autocorrelation function for the \pm J model relaxes in several steps whereas the one for the Gaussian model shows only one. In both systems the relaxation time increases like an Arrhenius law. Unlike the infinite range model, there are only very weak finite size effects and there is no evidence that a dynamical or a static transition exists at a finite temperature.Comment: 9 pages of Latex, 4 figure

    Finite-size scaling at the dynamical transition of the mean-field 10-state Potts glass

    Full text link
    We use Monte Carlo simulations to study the static and dynamical properties of a Potts glass with infinite range Gaussian distributed exchange interactions for a broad range of temperature and system size up to N=2560 spins. The results are compatible with a critical divergence of the relaxation time tau at the theoretically predicted dynamical transition temperature T_D, tau \propto (T-T_D)^{-\Delta} with Delta \approx 2. For finite N a further power law at T=T_D is found, tau(T=T_D) \propto N^{z^\star} with z^\star \approx 1.5 and for T>T_D dynamical finite-size scaling seems to hold. The order parameter distribution P(q) is qualitatively compatible with the scenario of a first order glass transition as predicted from one-step replica symmetry breaking schemes.Comment: 8 pages of Latex, 4 figure

    The Glassy Potts Model

    Full text link
    We introduce a Potts model with quenched, frustrated disorder, that enjoys of a gauge symmetry that forbids spontaneous magnetization, and allows the glassy phase to extend from TcT_c down to T=0. We study numerical the 4 dimensional model with q=4q=4 states. We show the existence of a glassy phase, and we characterize it by studying the probability distributions of an order parameter, the binder cumulant and the divergence of the overlap susceptibility. We show that the dynamical behavior of the system is characterized by aging.Comment: 4 pages including 4 (color) ps figures (all on page 4

    Critical Behavior of Three-Dimensional Disordered Potts Models with Many States

    Get PDF
    We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower pp values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat. Mec

    Synthesis of Potential Anti-Cancer Agents. XVI. Nitrogen Mustards from 1-Aminophenazine and 8-Aminoquinoline

    Get PDF
    The synthesis of nitrogen mustard amides from 1-aminophenazine and 8-aminoquinoline is described

    Partially and Fully Frustrated Coupled Oscillators With Random Pinning Fields

    Full text link
    We have studied two specific models of frustrated and disordered coupled Kuramoto oscillators, all driven with the same natural frequency, in the presence of random external pinning fields. Our models are structurally similar, but differ in their degree of bond frustration and in their finite size ground state properties (one has random ferro- and anti-ferromagnetic interactions; the other has random chiral interactions). We have calculated the equilibrium properties of both models in the thermodynamic limit using the replica method, with emphasis on the role played by symmetries of the pinning field distribution, leading to explicit predictions for observables, transitions, and phase diagrams. For absent pinning fields our two models are found to behave identically, but pinning fields (provided with appropriate statistical properties) break this symmetry. Simulation data lend satisfactory support to our theoretical predictions.Comment: 37 pages, 7 postscript figure

    How the Replica-Symmetry-Breaking Transition Looks Like in Finite-Size Simulations

    Full text link
    Finite-size effects in the mean-field Ising spin glass and the mean-field three-state Potts glass are investigated by Monte Carlo simulations. In the thermodynamic limit, each model is known to exhibit a continuous phase transition into the ordered state with a full and a one-step replica-symmetry breaking (RSB), respectively. In the Ising case, Binder parameter g calculated for various finite sizes remains positive at any temperature and crosses at the transition point, while in the Potts case g develops a negative dip without showing a crossing in the g>0 region. By contrast, non-self averaging parameters always remain positive and show a clear crossing at the transition temperature in both cases. Our finding suggests that care should be taken in interpreting the numerical data of the Binder parameter, particularly when the system exhibits a one-step-like RSB.Comment: 7 pages, 8 figure

    Numerical Study of a Field Theory for Directed Percolation

    Full text link
    A numerical method is devised for study of stochastic partial differential equations describing directed percolation, the contact process, and other models with a continuous transition to an absorbing state. Owing to the heightened sensitivity to fluctuationsattending multiplicative noise in the vicinity of an absorbing state, a useful method requires discretization of the field variable as well as of space and time. When applied to the field theory for directed percolation in 1+1 dimensions, the method yields critical exponents which compare well against accepted values.Comment: 18 pages, LaTeX, 6 figures available upon request LC-CM-94-00

    Warm climates of the past—a lesson for the future? This is one article from the Discussion Meeting Issue ‘Warm climates of the past—a lesson for the future?’ compiled and edited by Daniel J. Lunt, Harry Elderfield, Richard Pancost and Andy Ridgwell

    Get PDF
    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change
    • 

    corecore