4,452 research outputs found
Morphological instability, evolution, and scaling in strained epitaxial films: An amplitude equation analysis of the phase field crystal model
Morphological properties of strained epitaxial films are examined through a
mesoscopic approach developed to incorporate both the film crystalline
structure and standard continuum theory. Film surface profiles and properties,
such as surface energy, liquid-solid miscibility gap and interface thickness,
are determined as a function of misfit strains and film elastic modulus. We
analyze the stress-driven instability of film surface morphology that leads to
the formation of strained islands. We find a universal scaling relationship
between the island size and misfit strain which shows a crossover from the
well-known continuum elasticity result at the weak strain to a behavior
governed by a "perfect" lattice relaxation condition. The strain at which the
crossover occurs is shown to be a function of liquid-solid interfacial
thickness, and an asymmetry between tensile and compressive strains is
observed. The film instability is found to be accompanied by mode coupling of
the complex amplitudes of the surface morphological profile, a factor
associated with the crystalline nature of the strained film but absent in
conventional continuum theory.Comment: 16 pages, 10 figures; to be published in Phys. Rev.
Phase field crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures
The dynamics of phase field crystal (PFC) modeling is derived from dynamical
density functional theory (DDFT), for both single-component and binary systems.
The derivation is based on a truncation up to the three-point direct
correlation functions in DDFT, and the lowest order approximation using scale
analysis. The complete amplitude equation formalism for binary PFC is developed
to describe the coupled dynamics of slowly varying complex amplitudes of
structural profile, zeroth-mode average atomic density, and system
concentration field. Effects of noise (corresponding to stochastic amplitude
equations) and species-dependent atomic mobilities are also incorporated in
this formalism. Results of a sample application to the study of surface
segregation and interface intermixing in alloy heterostructures and strained
layer growth are presented, showing the effects of different atomic sizes and
mobilities of alloy components. A phenomenon of composition overshooting at the
interface is found, which can be connected to the surface segregation and
enrichment of one of the atomic components observed in recent experiments of
alloying heterostructures.Comment: 26 pages, 5 figures; submitted to Phys. Rev.
Diffusive Atomistic Dynamics of Edge Dislocations in Two Dimensions
The fundamental dislocation processes of glide, climb, and annihilation are
studied on diffusive time scales within the framework of a continuum field
theory, the Phase Field Crystals (PFC) model. Glide and climb are examined for
single edge dislocations subjected to shear and compressive strain,
respectively, in a two dimensional hexagonal lattice. It is shown that the
natural features of these processes are reproduced without any explicit
consideration of elasticity theory or ad hoc construction of microscopic
Peierls potentials. Particular attention is paid to the Peierls barrier for
dislocation glide/climb and the ensuing dynamic behavior as functions of strain
rate, temperature, and dislocation density. It is shown that the dynamics are
accurately described by simple viscous motion equations for an overdamped point
mass, where the dislocation mobility is the only adjustable parameter. The
critical distance for the annihilation of two edge dislocations as a function
of separation angle is also presented.Comment: 13 pages with 17 figures, submitted to Physical Review
- …