16 research outputs found

    6′′‐Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91322/1/ange_201200761_sm_miscellaneous_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91322/2/5750_ftp.pd

    Novel Pullulan Bioconjugate for Selective Breast Cancer Bone Metastases Treatment

    No full text
    A novel polysaccharide bioconjugate was designed to selectively target breast cancer bone metastases using a bisphosphonate moiety (alendronate, ALN). Paclitaxel (PTX) was first covalently conjugated to pullulan (Pull) through a Cathepsin K-sensitive tetrapeptide spacer followed by a self-immolative aminobenzyl alcohol spacer to obtain Pull-(GGPNle-phi-PTX). ALN was then conjugated to the polymeric backbone of Pull-(GGPNle-phi-PTX) via a PEG spacer. The final bioconjugate Pull-(GGPNle-phi-PTX)-(PEG-ALN) was found to assemble into colloidal spherical structures, which were physically and chemically stable under physiological conditions. In vitro studies showed that Pull-(GGPNle-phi-PTX)-(PEG-ALN) had strong affinity for hydroxyapatite, which simulates the bone tissue. Paclitaxel was rapidly released from the bioconjugate by Cathepsin K cleavage under pathological conditions. All studies performed using human MDA-MB-231-BM (bone metastases-originated clone), murine 4T1 breast cancer cells, murine K7M2, and human SAOS-2 osteosarcoma cells showed that the bioconjugate exerted an enhanced antiproliferative activity compared to the conjugate without the ALN. Furthermore, the nanoconjugate inhibited the migration of cancer cells and further displayed potent anti-angiogenic activity. In conclusion, the results showed that this conjugate has an excellent potential for selective treatment of bone neoplasms such as breast cancer bone metastases and osteosarcoma

    The Role of PEDF in Reproductive Aging of the Ovary

    No full text
    Reproductive aging is characterized by a decline in ovarian function and in oocytes’ quantity and quality. Pigment epithelium-derived factor (PEDF), a pivotal player in ovarian angiogenic and oxidative balance, was evaluated for its involvement in reproductive aging. Our work examines the initial stage of reproductive aging in women and mice, and the involvement of PEDF in the process. Granulosa cells from reproductively-aged (RA) women and mice (36–44 years old and 9–10 months old, respectively) indicated an increase in the level of PEDF mRNA (qPCR), with yet unchanged levels of AMH and FSHR mRNAs. However, the PEDF protein level in individual women showed an intra-cellular decrease (ELISA), along with a decrease in the corresponding follicular fluid, which reflects the secreted fraction of the protein. The in vitro maturation (IVM) rate in the oocytes of RA mice was lower compared with the oocytes of young mice, demonstrated by a reduced polar body extrusion (PBE) rate. The supplementation of PEDF improved the hampered PBE rate, manifested by a higher number of energetically-competent oocytes (ATP concentration and mtDNA copy number of individual oocytes). Our findings propose PEDF as an early marker of reproductive aging, and a possible therapeutic in vitro agent that could enhance the number of good-quality oocytes in older IVF patients

    Remarkable Enhancement of Chemi­lumin­escent Signal by Dioxetane–Fluorophore Conjugates: Turn-ON Chemi­lumin­escence Probes with Color Modulation for Sensing and Imaging

    No full text
    Chemi­lumin­escence is among the most sensitive methods for achieving a high signal-to-noise ratio in various chemical and biological applications. We have developed a modular practical synthetic route for preparation of turn-ON fluorophore-tethered dioxetane chemi­lumin­escent probes. The chemi­lumin­escent emission of the probes was significantly amplified through an energy-transfer mechanism under physiological conditions. Two probes were composed with green and near-infrared (NIR) fluorescent dyes tethered to Schaap’s dioxetane. While both probes were able to provide chemi­lumin­escence <i>in vivo</i> images following sub­cutaneous injection, only the NIR probe could provide a chemi­lumin­escence image following intra­peritoneal injection. These are the first <i>in vivo</i> images produced by Schaap’s dioxetane chemi­lumin­escence probes with no need of an enhancer. Previously, chemi­lumin­escence cell images could only be obtained with a luciferin-based probe. Our NIR probe was able to image cells transfected with β-galactosidase gene by chemi­lumin­escence microscopy. We also report, for the first time, the instability of dioxetane–fluorophore conjugates to ambient light. Our synthetic route effectively overcomes this limitation through a late-stage functionalization of the dioxetane intermediate. We anticipate that our practical synthetic methodology will be useful for preparation of various chemi­lumin­escent probes for numerous applications

    Poly(ethylene glycol)\u2013paclitaxel\u2013alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases

    No full text
    Paclitaxel (PTX) and alendronate (ALN) are effective drugs used for the treatment of breast cancer bone metastases. Growing evidence suggests that low-dose taxanes and bisphosphonates possess anti-angiogenic properties. However, PTX is water-insoluble and toxic, even if administered at anti-angiogenic dosing schedule. Polymer conjugation of PTX will increase water-solubility and improve its pharmacokinetic profile directing it to the tumor site. We further propose to combine it with ALN for active bone targeting. We conjugated ALN and PTX with poly(ethylene glycol) (PEG) forming self-assembled micelles where PTX molecules are located at the inner core and the water-soluble ALN molecules at the outer shell. PTX-PEG-ALN micelles exhibited similar in vitro cytotoxic and anti-angiogenic activity as the free drugs. Biodistribution analysis demonstrated preferential tumor accumulation of FITC-labeled PTX-PEG-ALN micelles. Pharmacokinetic studies revealed longer t1/2 of the conjugate than free PTX. PTX-PEG-ALN micelles achieved improved efficacy and safety profiles over free PTX in syngeneic and xenogeneic mouse models of mCherry-infected mammary adenocarcinoma in the tibia, as monitored intravitally non-invasively by a fluorescence imaging system. The described data warrants the potential use of PTX-PEG-ALN as bone-targeted anticancer and anti-angiogenic therapy for breast cancer bone metastases

    Novel Pullulan Bioconjugate for Selective Breast Cancer Bone Metastases Treatment

    No full text
    A novel polysaccharide bioconjugate was designed to selectively target breast cancer bone metastases using a bisphosphonate moiety (alendronate, ALN). Paclitaxel (PTX) was first covalently conjugated to pullulan (Pull) through a Cathepsin K-sensitive tetrapeptide spacer followed by a self-immolative aminobenzyl alcohol spacer to obtain Pull-(GGPNle-φ-PTX). ALN was then conjugated to the polymeric backbone of Pull-(GGPNle-φ-PTX) via a PEG spacer. The final bioconjugate Pull-(GGPNle-φ-PTX)-(PEG-ALN) was found to assemble into colloidal spherical structures, which were physically and chemically stable under physiological conditions. In vitro studies showed that Pull-(GGPNle-φ-PTX)-(PEG-ALN) had strong affinity for hydroxyapatite, which simulates the bone tissue. Paclitaxel was rapidly released from the bioconjugate by Cathepsin K cleavage under pathological conditions. All studies performed using human MDA-MB-231-BM (bone metastases-originated clone), murine 4T1 breast cancer cells, murine K7M2, and human SAOS-2 osteosarcoma cells showed that the bioconjugate exerted an enhanced antiproliferative activity compared to the conjugate without the ALN. Furthermore, the nanoconjugate inhibited the migration of cancer cells and further displayed potent anti-angiogenic activity. In conclusion, the results showed that this conjugate has an excellent potential for selective treatment of bone neoplasms such as breast cancer bone metastases and osteosarcoma

    Near-Infrared Dioxetane Luminophores with Direct Chemiluminescence Emission Mode

    No full text
    Chemiluminescent luminophores are considered as one of the most sensitive families of probes for detection and imaging applications. Due to their high signal-to-noise ratios, luminophores with near-infrared (NIR) emission are particularly important for <i>in vivo</i> use. In addition, light with such long wavelength has significantly greater capability for penetration through organic tissue. So far, only a few reports have described the use of chemiluminescence systems for <i>in vivo</i> imaging. Such systems are always based on an energy-transfer process from a chemiluminescent precursor to a nearby emissive fluorescent dye. Here, we describe the development of the first chemiluminescent luminophores with a direct mode of NIR light emission that are suitable for use under physiological conditions. Our strategy is based on incorporation of a substituent with an extended π-electron system on the excited species obtained during the chemi­excitation pathway of Schaap’s adamant­ylidene-dioxetane probe. In this manner, we designed and synthesized two new luminophores with direct light emission wavelength in the NIR region. Masking of the luminophores with analyte-responsive groups has resulted in turn-ON probes for detection and imaging of β-galactosidase and hydrogen peroxide. The probes’ ability to image their corresponding analyte/enzyme was effectively demonstrated <i>in vitro</i> for β-galactosidase activity and <i>in vivo</i> in a mouse model of inflammation. We anticipate that our strategy for obtaining NIR luminophores will open new doors for further exploration of complex biomolecular systems using non-invasive intra­vital chemiluminescence imaging techniques
    corecore