6 research outputs found

    Congenital heart disease risk loci identified by genome-wide association study in European patients

    Get PDF
    Genetic factors undoubtedly affect the development of congenital heart disease (CHD) but still remain ill defined. We sought to identify genetic risk factors associated with CHD and to accomplish a functional analysis of SNP-carrying genes. We performed a genome-wide association study (GWAS) of 4034 White patients with CHD and 8486 healthy controls. One SNP on chromosome 5q22.2 reached genome-wide significance across all CHD phenotypes and was also indicative for septal defects. One region on chromosome 20p12.1 pointing to the MACROD2 locus identified 4 highly significant SNPs in patients with transposition of the great arteries (TGA). Three highly significant risk variants on chromosome 17q21.32 within the GOSR2 locus were detected in patients with anomalies of thoracic arteries and veins (ATAV). Genetic variants associated with ATAV are suggested to influence the expression of WNT3, and the variant rs870142 related to septal defects is proposed to influence the expression of MSX7. We analyzed the expression of all 4 genes during cardiac differentiation of human and murine induced pluripotent stem cells in vitro and by single-cell RNA-Seq analyses of developing murine and human hearts. Our data show that MACROD2, GOSR2, WNT3, and MSX7 play an essential functional role in heart development at the embryonic and newborn stages

    Results after Repair of Functional Tricuspid Regurgitation with a Three-Dimensional Annuloplasty Ring

    No full text
    Background: Tricuspid valve (TV) repair is the recommended treatment for severe functional tricuspid regurgitation (fTR) in patients undergoing left-sided surgery. For this purpose, a wide range of annuloplasty devices differing in form and flexibility are available. This study reports the results using a three-dimensional annuloplasty ring (Medtronic, Contour 3D Ring) for TV repair and analysis of risk factors. Methods: A cohort of 468 patients who underwent TV repair (TVr) with a concomitant cardiac procedure from December 2010 to January 2017 was retrospectively analyzed. Results: At follow-up, 96.1% of patients had no/trivial or mild TR. The 30-day mortality was 4.7%; it significantly differed between electively performed operations (2.7%) and urgent/emergent operations (11.7%). Risk factors for recurrent moderate and severe TR were LVEF < 50%, TAPSE < 16 mm, and moderate mitral valve (MV) regurgitation at follow-up. Preoperatively reduced renal function lead to a higher 30-day and overall mortality. Reoperation of the TV was required in six patients (1.6%). Risk factors for TV related reoperations were preoperative TV annulus over 50 mm and an implanted permanent pacemaker. Conclusions: TVr with the Contour 3D annuloplasty ring shows low TR recurrence and reoperation rates. Risk-factor analysis for the recurrence of TR revealed the importance of left- and right-ventricular function

    Genome Editing Redefines Precision Medicine in the Cardiovascular Field

    No full text
    Genome editing is a powerful tool to study the function of specific genes and proteins important for development or disease. Recent technologies, especially CRISPR/Cas9 which is characterized by convenient handling and high precision, revolutionized the field of genome editing. Such tools have enormous potential for basic science as well as for regenerative medicine. Nevertheless, there are still several hurdles that have to be overcome, but patient-tailored therapies, termed precision medicine, seem to be within reach. In this review, we focus on the achievements and limitations of genome editing in the cardiovascular field. We explore different areas of cardiac research and highlight the most important developments: (1) the potential of genome editing in human pluripotent stem cells in basic research for disease modelling, drug screening, or reprogramming approaches and (2) the potential and remaining challenges of genome editing for regenerative therapies. Finally, we discuss social and ethical implications of these new technologies

    Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation

    No full text
    Bioactive lipids such as sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) regulate diverse processes including cell proliferation, differentiation, and migration. However, their roles in cardiac differentiation and cardiomyocyte proliferation have not been explored. Using a 96-well differentiation platform for generating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) we found that S1P and LPA can independently enhance cardiomyocyte generation when administered at an early stage of differentiation. We showed that the combined S1P and LPA treatment of undifferentiated hiPSCs resulted in increased nuclear accumulation of β-catenin, the canonical Wnt signaling pathway mediator, and synergized with CHIR99021, a glycogen synthase kinase 3 beta inhibitor, to enhance mesodermal induction and subsequent cardiac differentiation. At later stages of cardiac differentiation, the addition of S1P and LPA resulted in cell cycle initiation in hiPSC-CMs, an effect mediated through increased ERK signaling. Although the addition of S1P and LPA alone was insufficient to induce cell division, it was able to enhance β-catenin-mediated hiPSC-CM proliferation. In summary, we demonstrated a developmental stage-specific effect of bioactive lipids to enhance hiPSC-CM differentiation and proliferation via modulating the effect of canonical Wnt/β-catenin and ERK signaling. These findings may improve hiPSC-CM generation for cardiac disease modeling, precision medicine, and regenerative therapies
    corecore