256 research outputs found

    Devon Island Programs 1971

    Get PDF
    From April to October 1971 the Arctic Institute's research base on the northeast coast of Devon Island (75°40'N, 84°40'W) was the seat of operations for over 50 investigators and their field assistants. The major research program was a large integrated tundra ecosystem study sponsored by the Canadian International Biological Program (IBP) .... The Base Camp was also used, though briefly, by groups of researchers from the Canadian Wildlife Survey conducting polar bear studies in northern Devon Island, and from the Polar Continental Shelf Project who were making glaciological studies of the Devon Island Ice Cap. ... The status and condition of the Base Camp, and the logistics services, remain essentially as reported in the 1970 field summary ..., although minor improvements and repairs were made to the 8 huts, and the water and power system and local transportation facilities were improved by the addition of another skidoo, bringing the total to 3. ... In 1971, as in the previous summer, the size and capacity (unfortunately not synonymous) of the Base Camp increased. Those who have visited the Camp in previous years would find little resemblance today. The Camp at present consists of 8 Parcolls and Jamesways (many of which were enlarged in 1971), which together with tents, some lent to the Institute by the Canadian Forces, provided both laboratory and living space. A secondary camp, situated some 5 miles from Base Camp, provided a base of operations for a group of researchers from the University of Manitoba. Remote from the large population of Base Camp it made work on muskoxen and other mammals somewhat easier. One problem that came to the fore in 1971 was how to keep to the minimum the impact of relatively large numbers of people with their equipment on the Truelove Lowland itself. All of those who lived at Base Camp cooperated in efforts to avoid any unsightliness and in fact several visitors noted the general tidiness of the area. Outside the BaseCamp, movement, particularly vehicle movement, was also kept to a minimum. ... [The two AINA-sponsored projects (ecological studies of sedge dominated meadow tundras, comparative ecology of High Arctic species of Saxifraga) are summarized.

    Channeling by Proximity: The Catalytic Advantages of Active Site Colocalization Using Brownian Dynamics

    Get PDF
    Nature often colocalizes successive steps in a metabolic pathway. Such organization is predicted to increase the effective concentration of pathway intermediates near their recipient active sites and to enhance catalytic efficiency. Here, the pathway of a two-step reaction is modeled using a simple spherical approximation for the enzymes and substrate particles. Brownian dynamics are used to simulate the trajectory of a substrate particle as it diffuses between the active site zones of two different enzyme spheres. The results approximate distances for the most effective reaction pathways, indicating that the most effective reaction pathway is one in which the active sites are closely aligned. However, when the active sites are too close, the ability of the substrate to react with the first enzyme was hindered, suggesting that even the most efficient orientations can be improved for a system that is allowed to rotate or change orientation to optimize the likelihood of reaction at both sites

    Thermodynamics of Nonstoichiometric Nickel Tellurides. I. Heat Capacity and Thermodynamic Functions of the δ Phase from 5 to 350°K

    Full text link
    Heat capacities of the nickel tellurides were measured at compositions NiTe1.1 and NiTe2.0 (near limits of homogeneity of the δ phase) and at one intermediate composition, NiTe1.5, from 5 to 350°K. Heat capacity values and entropy and enthalpy increments are tabulated. No evidence of order‐disorder transitions, or thermal anomalies, or of contributions to the thermal properties from the anisotropy or phonon scattering by the holes in the structure on approaching the composition NiTe2 was observed. Although simple additivity of the heat capacities of the constituent elements failed to represent that of the solution compositions adequately, a Kopp‐Neumann treatment in terms of the limiting compositions of the δ phase gives good agreement with the experimental heat capacity and entropy of NiTe1.5 and hence is useful in interpolating to other intermediate compositions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70090/2/JCPSA6-28-3-497-1.pd

    Kinetics of diffusion-controlled enzymatic reactions with charged substrates

    Get PDF
    The Debye-Hückel limiting law (DHL) has often been used to estimate rate constants of diffusion-controlled reactions under different ionic strengths. Two main approximations are adopted in DHL: one is that the solution of the linearized Poisson-Boltzmann equation for a spherical cavity is used to estimate the excess electrostatic free energy of a solution; the other is that details of electrostatic interactions of the solutes are neglected. This makes DHL applicable only at low ionic strengths and dilute solutions (very low substrate/solute concentrations). We show in this work that through numerical solution of the Poisson-Nernst-Planck equations, diffusion-reaction processes can be studied at a variety of conditions including realistically concentrated solutions, high ionic strength, and certainly with non-equilibrium charge distributions. Reaction rate coefficients for the acetylcholine-acetylcholinesterase system are predicted to strongly depend on both ionic strength and substrate concentration. In particular, they increase considerably with increase of substrate concentrations at a fixed ionic strength, which is open to experimental testing. This phenomenon is also verified on a simple model, and is expected to be general for electrostatically attracting enzyme-substrate systems

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio

    Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm

    Get PDF
    A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and “snapshots” of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited “crowding” effect must be included in attempts to understand macromolecular behavior in vivo

    Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties

    Get PDF
    A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from THEMATICS are combined with multidimensional isotonic regression to form maximum likelihood estimates of probabilities that specific residues belong to an active site. This allows likelihood ranking of all ionizable residues in a given protein based on THEMATICS features. The corresponding ROC curves and statistical significance tests demonstrate that this method outperforms prior THEMATICS-based methods, which in turn have been shown previously to outperform other 3D-structure-based methods for identifying active site residues. Then it is shown that the addition of one simple geometric property, the size rank of the cleft in which a given residue is contained, yields improved performance. Extension of the method to include predictions of non-ionizable residues is achieved through the introduction of environment variables. This extension results in even better performance than THEMATICS alone and constitutes to date the best functional site predictor based on 3D structure only, achieving nearly the same level of performance as methods that use both 3D structure and sequence alignment data. Finally, the method also easily incorporates such sequence alignment data, and when this information is included, the resulting method is shown to outperform the best current methods using any combination of sequence alignments and 3D structures. Included is an analysis demonstrating that when THEMATICS features, cleft size rank, and alignment-based conservation scores are used individually or in combination THEMATICS features represent the single most important component of such classifiers

    Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties

    Get PDF
    BACKGROUND: The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for functional prediction. Knowledge of catalytic sites provides a valuable insight into protein function. Although many computational methods have been developed to predict catalytic residues and active sites, their accuracy remains low, with a significant number of false positives. In this paper, we present a novel method for the prediction of catalytic sites, using a carefully selected, supervised machine learning algorithm coupled with an optimal discriminative set of protein sequence conservation and structural properties. RESULTS: To determine the best machine learning algorithm, 26 classifiers in the WEKA software package were compared using a benchmarking dataset of 79 enzymes with 254 catalytic residues in a 10-fold cross-validation analysis. Each residue of the dataset was represented by a set of 24 residue properties previously shown to be of functional relevance, as well as a label {+1/-1} to indicate catalytic/non-catalytic residue. The best-performing algorithm was the Sequential Minimal Optimization (SMO) algorithm, which is a Support Vector Machine (SVM). The Wrapper Subset Selection algorithm further selected seven of the 24 attributes as an optimal subset of residue properties, with sequence conservation, catalytic propensities of amino acids, and relative position on protein surface being the most important features. CONCLUSION: The SMO algorithm with 7 selected attributes correctly predicted 228 of the 254 catalytic residues, with an overall predictive accuracy of more than 86%. Missing only 10.2% of the catalytic residues, the method captures the fundamental features of catalytic residues and can be used as a "catalytic residue filter" to facilitate experimental identification of catalytic residues for proteins with known structure but unknown function

    Predicting active site residue annotations in the Pfam database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families (<0.5%) have had the residues responsible for catalysis determined. To increase the active site annotations in the Pfam database, we have developed a strict set of rules, chosen to reduce the rate of false positives, which enable the transfer of experimentally determined active site residue data to other sequences within the same Pfam family.</p> <p>Description</p> <p>We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and <it>MEROPS </it>we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives.</p> <p>Conclusion</p> <p>We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation.</p

    Efficient Identification of Critical Residues Based Only on Protein Structure by Network Analysis

    Get PDF
    Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins
    corecore