14 research outputs found

    Proarrhythmic remodelling of the right ventricle in a porcine model of repaired tetralogy of Fallot

    Get PDF
    OBJECTIVE: The growing adult population with surgically corrected tetralogy of Fallot (TOF) is at risk of arrhythmias and sudden cardiac death. We sought to investigate the contribution of right ventricular (RV) structural and electrophysiological remodelling to arrhythmia generation in a preclinical animal model of repaired TOF (rTOF). METHODS AND RESULTS: Pigs mimicking rTOF underwent cardiac MRI functional characterisation and presented with pulmonary regurgitation, RV hypertrophy, dilatation and dysfunction compared with Sham-operated animals (Sham). Optical mapping of rTOF RV-perfused wedges revealed a significant prolongation of RV activation time with slower conduction velocities and regions of conduction slowing well beyond the surgical scar. A reduced protein expression and lateralisation of Connexin-43 were identified in rTOF RVs. A remodelling of extracellular matrix-related gene expression and an increase in collagen content that correlated with prolonged RV activation time were also found in these animals. RV action potential duration (APD) was prolonged in the epicardial anterior region at early and late repolarisation level, thus contributing to a greater APD heterogeneity and to altered transmural and anteroposterior APD gradients in rTOF RVs. APD remodelling involved changes in Kv4.3 and MiRP1 expression. Spontaneous arrhythmias were more frequent in rTOF wedges and more complex in the anterior than in the posterior RV. CONCLUSION: Significant remodelling of RV conduction and repolarisation properties was found in pigs with rTOF. This remodelling generates a proarrhythmic substrate likely to facilitate re-entries and to contribute to sudden cardiac death in patients with rTOF

    Passive acoustic mapping of extravasation following ultrasound-enhanced drug delivery

    No full text
    The amount and distribution of chemotherapeutic agents delivered to tumours can vary significantly due to tumour heterogeneity, even under focussed ultrasound (FUS) assisted drug delivery regimes. The ability to non-invasively localise cavitation nuclei of a similar size to therapeutic drugs, both within the vasculature and tumour tissue, may provide a useful marker of ultrasound-enhanced drug delivery and extravasation. Solid polymer based nanoscale cavitation nuclei, under FUS excitation, have previously been shown to extravasate into tissue-mimicking phantoms, and to increase drug delivery in murine tumour models in vivo. Here we show in a tissue-mimicking material that these nuclei, once extravasated under FUS excitation, are still acoustically active and can be non-invasively localised using passive acoustic mapping (PAM). By using a high resolution dual linear array setup in conjunction with adaptive beamformers, we demonstrate that the average 'maximum distance' of a PAM pixel to an extravasated particle across experiments is mm. Although the primary objective of the paper is to show that extravascular cavitation can be used as evidence of successful drug extravasation in a tissue-mimicking phantom, we also recognise the physical and computational limitations of using a high resolution dual array setup with adaptive beamformers. Thus as a secondary objective, we evaluate tradeoffs between adaptive and non-adaptive beamformers, as well as between dual and single array geometries. When compared to a conventional beamformer, adaptive beamformers reduce the maximum distance of PAM pixels to extravasated particles from an average of mm to mm in the single array case. The distance is further reduced to mm using the dual array configuration, thereby demonstrating that increasing the solid angle spanned by the PAM array aperture significantly improves drug delivery localisation. Future work will test the applicability of PAM-based monitoring of ultrasound-enhanced drug delivery in vivo

    Passive acoustic mapping of extravasation following ultrasoundenhanced drug delivery

    No full text
    The amount and distribution of chemotherapeutic agents delivered to tumours can vary significantly due to tumour heterogeneity, even under focussed ultrasound (FUS) assisted drug delivery regimes. The ability to non-invasively localise cavitation nuclei of a similar size to therapeutic drugs, both within the vasculature and tumour tissue, may provide a useful marker of ultrasound-enhanced drug delivery and extravasation. Solid polymer based nanoscale cavitation nuclei, under FUS excitation, have previously been shown to extravasate into tissue-mimicking phantoms, and to increase drug delivery in murine tumour models in vivo. Here we show in a tissue-mimicking material that these nuclei, once extravasated under FUS excitation, are still acoustically active and can be non-invasively localised using passive acoustic mapping (PAM). By using a high resolution dual linear array setup in conjunction with adaptive beamformers, we demonstrate that the average 'maximum distance' of a PAM pixel to an extravasated particle across experiments is mm. Although the primary objective of the paper is to show that extravascular cavitation can be used as evidence of successful drug extravasation in a tissue-mimicking phantom, we also recognise the physical and computational limitations of using a high resolution dual array setup with adaptive beamformers. Thus as a secondary objective, we evaluate tradeoffs between adaptive and non-adaptive beamformers, as well as between dual and single array geometries. When compared to a conventional beamformer, adaptive beamformers reduce the maximum distance of PAM pixels to extravasated particles from an average of mm to mm in the single array case. The distance is further reduced to mm using the dual array configuration, thereby demonstrating that increasing the solid angle spanned by the PAM array aperture significantly improves drug delivery localisation. Future work will test the applicability of PAM-based monitoring of ultrasound-enhanced drug delivery in vivo

    Delivering focused ultrasound to intervertebral discs using time-reversal

    No full text
    Chronic low back pain causes more disability worldwide than any other condition and is thought to arise in part through loss of biomechanical function of degenerate intervertebral discs (IVDs). Current treatments can involve replacing part or all of the degenerate IVDs by invasive surgery. Our vision is to develop a minimally invasive approach in which high intensity focused ultrasound (HIFU) is used to mechanically fractionate degenerate tissue in an IVD; a fine needle is then used to first remove the fractionated tissue and then inject a biomaterial able to restore normal physiologic function. The goal of this manuscript is to demonstrate the feasibility of trans-spinal HIFU delivery using simulations of 3-D ultrasound propagation in models derived from patient computed tomography (CT) scans. The CT data were segmented into bone, fat and other soft tissue for three patients. Ultrasound arrays were placed around the waist of each patient model, and time-reversal was used to determine the source signals necessary to create a focus in the center of the disc. The simulations showed that for 0.5 MHz ultrasound, a focus could be created in most of the lumbar IVDs, with the pressure focal gain ranging from 3.2–13.7. In conclusion, it is shown that with patient-specific planning, focusing ultrasound into an IVD is possible in the majority of patients despite the complex acoustic path introduced by the bony structures of the spine

    Delivering focused ultrasound to intervertebral discs using time-reversal

    No full text
    Chronic low back pain causes more disability worldwide than any other condition and is thought to arise in part through loss of biomechanical function of degenerate intervertebral discs (IVDs). Current treatments can involve replacing part or all of the degenerate IVDs by invasive surgery. Our vision is to develop a minimally invasive approach in which high intensity focused ultrasound (HIFU) is used to mechanically fractionate degenerate tissue in an IVD; a fine needle is then used to first remove the fractionated tissue and then inject a biomaterial able to restore normal physiologic function. The goal of this manuscript is to demonstrate the feasibility of trans-spinal HIFU delivery using simulations of 3-D ultrasound propagation in models derived from patient computed tomography (CT) scans. The CT data were segmented into bone, fat and other soft tissue for three patients. Ultrasound arrays were placed around the waist of each patient model, and time-reversal was used to determine the source signals necessary to create a focus in the center of the disc. The simulations showed that for 0.5 MHz ultrasound, a focus could be created in most of the lumbar IVDs, with the pressure focal gain ranging from 3.2–13.7. In conclusion, it is shown that with patient-specific planning, focusing ultrasound into an IVD is possible in the majority of patients despite the complex acoustic path introduced by the bony structures of the spine

    Dual array passive acoustic mapping for cavitation imaging with enhanced 2-D resolution

    No full text
    Passive acoustic mapping (PAM) techniques have been developed for the purposes of detecting, localizing and quantifying cavitation activity during therapeutic ultrasound procedures. Implementation with conventional diagnostic ultrasound arrays has allowed planar mapping of bubble acoustic emissions to be overlaid with B-mode anatomical images, with a variety of beamforming approaches providing enhanced resolution at the cost of extended computation times. However, no passive signal processing techniques implemented to date have overcome the fundamental physical limitation of the conventional diagnostic array aperture that results in point spread functions with axial/lateral beamwidth ratios of nearly an order of magnitude. To mitigate this problem, the use of a pair of orthogonally oriented diagnostic arrays was recently proposed, with potential benefits arising from the substantially expanded range of observation angles. This paper presents experiments and simulations intended to demonstrate the performance and limitations of the dual-array system concept. The key finding of this study is that source pair resolution of better than 1 mm is now possible in both dimensions of the imaging plane using a pair of 7.5 MHz center frequency conventional arrays at a distance of 7.6 cm. With an eye toward accelerating computations for real time applications, channel count reductions of up to a factor of eight induce negligible performance losses. Modest sensitivities to sound speed and relative array position uncertainties were identified, but if these can be kept on the order of 1% and 1 mm, respectively, then the proposed methods offer the potential for a step improvement in cavitation monitoring capability
    corecore