122 research outputs found

    Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates

    Get PDF
    The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased potency both in vitro and in vivo compared to longer oligonucleotides. The short LNA oligonucleotides were more target specific, and they exhibited the same biodistribution and tissue half-life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1–2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non-high-density lipoprotein (non-HDL) cholesterol without increasing serum liver toxicity markers. The data presented here show that oligonucleotide length as a parameter needs to be considered in the design of antisense oligonucleotide and that potent short oligonucleotides with sufficient target affinity can be generated using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates

    Targeting of Aberrant αvβ6 Integrin Expression in Solid Tumors Using Chimeric Antigen Receptor-Engineered T Cells.

    Get PDF
    Expression of the αvβ6 integrin is upregulated in several solid tumors. In contrast, physiologic expression of this epithelial-specific integrin is restricted to development and epithelial re-modeling. Here, we describe, for the first time, the development of a chimeric antigen receptor (CAR) that couples the recognition of this integrin to the delivery of potent therapeutic activity in a diverse repertoire of solid tumor models. Highly selective targeting αvβ6 was achieved using a foot and mouth disease virus-derived A20 peptide, coupled to a fused CD28+CD3 endodomain. To achieve selective expansion of CAR T cells ex vivo, an IL-4-responsive fusion gene (4αβ) was co-expressed, which delivers a selective mitogenic signal to engineered T cells only. In vivo efficacy was demonstrated in mice with established ovarian, breast, and pancreatic tumor xenografts, all of which express αvβ6 at intermediate to high levels. SCID beige mice were used for these studies because they are susceptible to cytokine release syndrome, unlike more immune-compromised strains. Nonetheless, although the CAR also engages mouse αvβ6, mild and reversible toxicity was only observed when supra-therapeutic doses of CAR T cells were administered parenterally. These data support the clinical evaluation of αvβ6 re-targeted CAR T cell immunotherapy in solid tumors that express this integrin

    ChemInform Abstract: CuSO 4

    No full text

    Analisis Pengaruh Diferensiasi Dan Kualitas Pelayanan Terhadap Kepuasan Nasabah

    No full text

    Analisis Pengaruh Diferensiasi Dan Kualitas Pelayanan Terhadap Kepuasan Nasabah

    No full text
    corecore