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Abstract
We consider the following discrete Fox harvesting model with feedback control of the
form

{
x(n + 1) = x(n) exp{β(n) lnr( K (n)x(n) ) – α(n) – γ (n)u(n)},
�u(n) = –μ(n)u(n) + ν(n)x(n).

Under the assumptions of almost periodicity of the coefficients, sufficient conditions
are established for the existence and uniformly asymptotical stability of almost
periodic solutions of this model. The persistence as well as the boundedness of
solutions of the above system are discussed prior to presenting the main result.
Examples are provided to illustrate the effectiveness of the proposed results.
MSC: 39A11; 34K14
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1 Introduction
Consider the following equation of population dynamics [, ]:

x′(t) = –xF(t,x) + xG(t,x), x′(t) =
dx
dt

, ()

where x = x(t) is the size of the population, F(t,x) is the per-capita harvesting rate and
G(t,x) is the per-capita fecundity rate. Let G(t,x) and F(t,x) be defined in the form

F(t,x) = α(t) and G(t,x) = β(t) lnr
(
K(t)
x(t)

)
, r > ,

then equation () becomes

x′(t) = x(t)
[
β(t) lnr

(
K(t)
x(t)

)
– α(t)

]
, ()

where α(t) is a variable harvesting rate, β(t) is an intrinsic factor and K(t) is a varying
environmental carrying capacity. The positive parameter r is referred to as an interac-
tion parameter [, , ]. Indeed, if r >  then intra-specific competition is high, whereas
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if  < r < , then the competition is low. For r = , equation () reduces to the classical
Gompertzian model with harvesting [, ]. Equation () is called a Fox surplus produc-
tion model that has been used to build up certain prediction models such as microbial
growthmodel, demographic model and fisheries model. This equation is considered to be
an efficient alternative to the well known r-logistic model. Specifically, the Fox model is
more appropriate upon describing lower population density; we refer the reader to [, ,
, –] and, in particular, to the recent paper [] for more information.
Ecosystems in the real world are continuously disturbed by unpredictable forces which

can result in changing some biological parameters such as survival rates. In ecology, a
question of practical interest is whether or not an ecosystem can withstand these unpre-
dictable disturbances which persist for a finite period of time. In the language of con-
trol theory, we call these disturbance functions a control variable. In [], Gopalsamy and
Weng introduced a model with feedback controls in which the control variables satisfy a
certain differential equation. The next years have witnessed the appearance of many pa-
pers regarding the study of ecosystems with feedback control; see for instance [–].
In the last years, many authors have argued that the discrete time models governed by

difference equations are more appropriate than the continuous counterparts, especially
when the populations have no overlapping generations. It is also known that the discrete
models can providemore efficient computational methods for numerical simulations [–
]. By applying the same method used in [], one can derive the discrete analogue of ()
as follows:

x(n + ) = x(n) exp
{
β(n) lnr

(
K(n)
x(n)

)
– α(n)

}
. ()

One of the most important behaviors of solutions which has been the main object of
investigations among authors is the periodic behavior of solutions [–]. To consider
periodic environmental factors acting on a population model, it is natural to study the
model subject to periodic coefficients. Indeed, the assumption of periodicity of the pa-
rameters in the model is a way of incorporating the time-dependent variability of the en-
vironment (e.g., seasonal effects of weather, food supplies, mating habits and harvesting).
On the other hand, upon considering long-term dynamical behavior, it has been found
that the periodic parameters often turn out to experience some perturbations that may
lead to a change in character. Thus, the investigation of almost periodic behavior is con-
sidered to be in more accordance with reality; see the remarkable monographs [–]
and the recent contributions [–].
Motivated by the above justifications, we consider the following discrete Fox harvesting

model with feedback control in the form
⎧⎨
⎩x(n + ) = x(n) exp{β(n) lnr(K (n)

x(n) ) – α(n) – γ (n)u(n)},
�u(n) = –μ(n)u(n) + ν(n)x(n),

()

where u(n) is the control variable and �u(n) is the forward difference u(n + ) – u(n).
Under the assumptions of almost periodicity of coefficients of system (), we shall study
the existence and uniformly asymptotical stability of almost periodic solutions for system
(). The persistence as well as the boundedness of solutions of system () are discussed
prior to presenting the main result. To the best of author’s observation, no paper has been
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published in the literature regarding the dynamics of almost periodic solutions of system
(). Thus, the result of this paper is essentially different and presents a new approach.
The remaining part of this paper is organized as follows. In Section , some preliminary

definitions along with essential lemmas are given. Section  discusses the persistence and
boundedness of solutions of system (). In Section , sufficient conditions are established
to investigate the existence and uniformly asymptotical stability of almost periodic so-
lutions of the said system. Section  provides some numerical examples to illustrate the
feasibility of our theoretical results.

2 Preliminaries
Let R, R+, Z and Z

+ be the sets of real, nonnegative real, integer and nonnegative integer
numbers respectively. For any bounded sequence {f (n)} on Z, we define

f M = sup
n∈Z

f (n) and f m = inf
n∈Z

f (n). ()

Throughout the remainder of this paper, we assume the following condition:
(H.) {β(n)}, {K(n)}, {α(n)}, {γ (n)}, {μ(n)} and {ν(n)} are bounded nonnegative almost

periodic sequences such that

 < βm ≤ β(n)≤ βM,  < Km ≤ K(n) ≤ KM,  < αm ≤ α(n)≤ αM,

 < γm ≤ γ (n) ≤ γM,  < νm ≤ ν(n)≤ νM,  < μm ≤ μ(n) ≤ μM < .

Due to certain biological reasons, we restrict our attention to positive solutions of system
(). Thus, we consider system () together with the following initial conditions:

x() >  and u() > . ()

One can easily figure out that the solutions of system () with the initial conditions () are
defined and remain positive for all n ∈ Z

+.

Definition  [] A sequence x : Z → R is called an almost periodic sequence if the ε-
translation set E{ε,x} = {τ ∈ Z : |x(n+ τ ) –x(n) < ε,∀n ∈ Z} is a relatively dense set in Z for
all ε > , that is, for any ε >  there is a constant l(ε) >  such that in any interval of length
l(ε) there exists a number τ ∈ E{ε,x} such that the inequality

∣∣x(n + τ ) – x(n)
∣∣ < ε

is satisfied for all n ∈ Z.

Definition  [] Let f : Z × D → R where D is an open set in R. Then f (n,x) is said to
be almost periodic in n uniformly for x ∈ D, or uniformly almost periodic for short, if for
any ε >  and any compact set S ∈ D, there exists a positive integer l(ε,S) such that any
interval of length l(ε,S) contains an integer τ for which

∣∣f (n + τ ,x) – f (n,x)
∣∣ < ε

for all n ∈ Z and x ∈ S. The number τ is called the ε-translation for f (n,x).

http://www.advancesindifferenceequations.com/content/2012/1/157
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Lemma  [] {x(n)} is an almost periodic sequence if and only if for any sequence {h′
k} ⊂

Z, there exists a subsequence {hk} ⊂ {h′
k} such that x(n + hk) converges uniformly on n ∈ Z

as k → ∞. Furthermore, the limit sequence is also an almost periodic sequence.

Consider the following almost periodic difference system:

x(n + ) = f
(
n,x(n)

)
, n ∈ Z

+, ()

where f : Z × Sδ → R, Sδ = {x ∈ R : ‖x‖ < δ} and f (n,x) is almost periodic in n uniformly
for x ∈ Sδ and is continuous in x. The product system of () is in the form

x(n + ) = f
(
n,x(n)

)
, y(n + ) = f

(
n, y(n)

)
. ()

Our approach is based on the following lemma.

Lemma  [] Suppose that there exists a Lyapunov functional V (n,x, y) defined for n ∈
Z
+, ‖x‖ < δ, ‖y‖ < δ and satisfying the following conditions:
(i) a(‖x – y‖) ≤ V (n,x, y) ≤ b(‖x – y‖), where a,b ∈ T with

T = {a ∈ C(R+,R+) : a() =  and a is increasing};
(ii) |V (n,x, y) –V (n,x, y)| ≤ L(‖x – x‖ + ‖y – y‖) where L >  is a constant;
(iii) �()V (n,x, y) ≤ –λV (n,x, y) where  < λ <  is a constant and

�()V (n,x, y) = V (n + , f (n,x), f (n, y)) –V (n,x, y).
Moreover, if there exists a solution ϕ(n) of system () such that ‖ϕ(n)‖ ≤ δ* < δ for n ∈ Z

+,
then there exists a unique uniformly asymptotically stable almost periodic solution p(n)
of system () which satisfies ‖p(n)‖ ≤ δ*. In particular, if f (n,x) is periodic of period ω,
then there exists a unique uniformly asymptotically stable periodic solution of system ()
of period ω.

3 Persistence and boundedness
In this section, we prove every solution of system () is persistent. In addition to this, we
prove that there exists a bounded solution for ().

Definition  System () is said to be persistent if there are positive constants x*, u*, x* and
u* such that

lim sup
n→∞

x(n)≤ x*, lim sup
n→∞

u(n) ≤ u*

and

lim inf
n→∞ x(n)≥ x*, lim sup

n→∞
u(n) ≥ u*

for each positive solution (x(n),u(n)) of ().

We assume the following condition:
(H.) βm lnr Km > αM + γMu*.
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Set

x* = KMe[(
α
β
)m]–


r
exp

{(
β lnr K

)M}
and u* =

νMx*

μm .

Lemma  Let (H.), (H.) hold. Then, every solution of system () satisfies

lim sup
n→∞

x(n)≤ x* and lim sup
n→∞

u(n) ≤ u*.

Proof Let (x(n),u(n)) be a solution of (). To prove that lim supn→∞ x(n) ≤ x*, we consider
two cases:
Case I. There exists l ∈ Z

+ such that x(l + ) ≥ x(l). By the first equation of (), we
have

β(l) lnr
(
K(l)
x(l)

)
– α(l) – γ (l)u(l) ≥ ,

which implies that

x(l) ≤ KMe[(
α
β
)m]–


r ≤ x*.

Thus,

x(l + ) = x(l) exp
{
β(l) lnr

(
K(l)
x(l)

)
– α(l) – γ (l)u(l)

}

≤ KMe[(
α
β
)m]–


r
exp

{(
β lnr K

)M}
= x*.

We claim that x(n)≤ x* for n≥ l. Indeed, if there is an integer n ≥ l + such that x(n) >
x* and n is the least integer between l and n such that x(n) = maxl≤n≤n{x(n)}, then
n ≥ l+ and x(n) > x(n –) which implies that x(n) ≤ x* < x(n). This is a contradiction.
This proves the claim.
Case II. Let x(n)≥ x(n+ ) for n ∈ Z

+. Then, limn→∞ x(n) exists and equals x̄. Taking the
limit of the first equation in (), we have

lim
n→∞

(
β(n) lnr

(
K(n)
x(n)

)
– α(n) – γ (n)u(n)

)
= .

Hence x̄ ≤ KMe[(
α
β
)m]–


r ≤ x*. This proves the claim.

Now, we prove that lim supn→∞ u(n) ≤ u*. For any ε > , there exists a large enough
integer n ∈ Z

+ such that x(n)≤ x* + ε for n≥ n. By the second equation of (), we get

u(n) =
n–∏
i=

(
 –μ(i)

)[
u() +

n–∑
i=

ν(i)x(i)∏i
j=( –μ(j))

]

≤ (
 –μm)n[u() + n–∑

i=

ν(i)x(i)∏i
j=( –μ(j))

]
+ νM(

x* + ε
) n–∑
i=n

n–∏
j=i–

(
 –μ(j)

)
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≤ (
 –μm)n[u() + n–∑

i=

ν(i)x(i)∏i
j=( –μ(j))

]

+ νM(
x* + ε

) n–∑
i=n

(
 –μm)n–i–.

Since  < μm < , we can find a positive number d such that  – μm = e–d . Thus, by using
Stolz’s theorem, we obtain

lim
n→∞

n–∑
i=n

(
 –μm)n–i– = lim

n→∞

∑n–
i–n e

d(i+)

edn
=


 – e–d

=


μm .

Hence

lim sup
n→∞

u(n) ≤ νM(x* + ε)
μm .

By the arbitrariness of ε, we obtain lim supn→∞ u(n) ≤ νMx*
μm := u*. The proof of Lemma 

is complete. �

Set

x* = Kme(
αM+γM (u*)

βm )–

r
exp

{
βm lnr

(
Km

x*

)
– αM – γMu*

}
and u* =

νmx*
μM .

Lemma  Let (H.), (H.) hold. Then every solution of system () satisfies

lim inf
n→∞ x(n)≥ x* and lim inf

n→∞ u(n) ≥ u*.

Proof Let (x(n),u(n)) be a solution of (). By virtue of Lemma , one can figure out that
for any ε >  which satisfies βm lnr Km > αM + γM(u* + ε), there exists n ∈ Z

+ such that

x(n)≤ x* + ε and u(n) ≤ u* + ε for n≥ n.

To prove that lim infn→∞ x(n) ≥ x*, we consider two cases:
Case I. There exists l ≥ n such that x(l + ) ≤ x(l). We observe that for n ≥ l, we

have

x(n + ) = x(n) exp
{
β(n) lnr

(
K(n)
x(n)

)
– α(n) – γ (n)u(n)

}

≥ x(n) exp
{
βm lnr

(
K(n)
x(n)

)
– αM – γM(

u* + ε
)}

.

For n = l, we get

βm lnr
(
K(l)
x(l)

)
– αM – γM(

u* + ε
) ≤ ,

http://www.advancesindifferenceequations.com/content/2012/1/157
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which implies that

x(l) ≥ Kme(
αM+γM (u*+ε)

βm )–

r .

It follows that

x(l + ) = x(l) exp
{
β(l) lnr

(
K(l)
x(l)

)
– α(l) – γ (l)u(l)

}

≥ Kme(
αM+γM (u*+ε)

βm )–

r
exp

{
βm lnr

(
Km

x* + ε

)
– αM – γM(

u* + ε
)}

.

Let

xε = Kme(
αM+γM (u*+ε)

βm )–

r
exp

{
βm lnr

(
Km

x* + ε

)
– αM – γM(

u* + ε
)}

.

We claim that

x(n)≥ xε for n ≥ l.

For the sake of contradiction, assume that there exists p ≥ l such that x(p) < xε . Then
p ≥ l +. Let p ≥ l + be the smallest integer such that x(p) < xε . Then x(p –) > x(p).
The above arguments imply that x(p) ≥ xε which is a contradiction. This proves the claim.
Case II. Let x(n) > x(n + ) for all n ∈ Z

+. Then, limn→∞ x(n) exists and it is equal to x.
Taking the limit of the first equation of (), we have

lim
n→∞

(
β(n) lnr

(
K(n)
x(n)

)
– α(n) – γ (n)u(n)

)
= .

Hence x ≥ Kme(
αM+γM (u*+ε)

βm )–

r ≥ xε and limε→ xε = x*. This proves the claim.

By applying the same arguments followed in the proof of Lemma , one can easily show
that limn→∞ u(n) ≥ u*. The proof of Lemma  is complete. �

The results of Lemma  and Lemma  can be concluded in the following theorem:

Theorem  Let (H.), (H.) hold. Then system () is persistent.

Let � be the set of all solutions (x(n),u(n)) of system () satisfying x* ≤ x(n) ≤ x* and
u* ≤ u(n) ≤ u* for all n ∈ Z

+. By virtue of Theorem , it should be noted that � is an
invariant set of system ().
In view of Lemma , we need to show that there exists a bounded solution of system ().

The following result proves the existence of such a solution.

Theorem  Let (H.), (H.) hold. Then � �= ∅.

Proof By the almost periodicity of {β(n)}, {K(n)}, {α(n)}, {γ (n)}, {μ(n)} and {ν(n)}, there
exists an integer valued sequence {τp} with {τp} → ∞ as p → ∞ such that β(n + τp) →
β(n), K(n+ τp) → K(n), α(n+ τp) → α(n), γ (n+ τp) → γ (n), μ(n+ τp) → μ(n), ν(n+ τp) →

http://www.advancesindifferenceequations.com/content/2012/1/157
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ν(n) as p→ ∞. Let ε be an arbitrary small positive number. It follows from Lemma  and
Lemma  that there exists a positive integer N such that

x* – ε ≤ x(n)≤ x* + ε and u* – ε ≤ u(n) ≤ u* + ε, for all n >N.

Let xp(n) = x(n + τp) and up(n) = u(n + τp) for n ≥ N – τp, p = , , . . . . For any positive
integer q, it is easy to see that there exist sequences {xp(n) : p ≥ q} and {up(n) : p ≥ q}
such that the sequences {xp(n)} and {up(n)} have subsequences, denoted by {xp(n)} and
{up(n)} again, converging on any finite interval of Z as p → ∞, respectively. Thus, we
have sequences {z(n)} and {w(n)} such that

xp(n) → z(n) and up(n) → w(n) for n ∈ Z as p→ ∞.

Therefore, the system

⎧⎨
⎩xp(n + ) = xp(n) exp{β(n + τp) lnr(

K (n+τp)
xp(n) ) – α(n + τp) – γ (n + τp)up(n)},

up(n + ) = ( –μ(n + τp))up(n) + ν(n + τp)xp(n),
()

implies

⎧⎨
⎩z(n + ) = z(n) exp{β(n) lnr(K (n)

z(n) ) – α(n) – γ (n)w(n)},
w(n) = ( –μ(n))w(n) + ν(n)z(n).

()

We can easily see that (z(n),w(n)) is a solution of system () and x* – ε ≤ z(n) ≤ x* + ε,
u* – ε ≤ w(n) ≤ u* + ε for n ∈ Z. Since ε is arbitrary, it follows that x* ≤ z(n) ≤ x*, u* ≤
w(n) ≤ u* for n ∈ Z. This completes the proof. �

4 Themain result
Let f (x) = lnr(K (n)

ex ), where x ∈ [lnx*, lnx*]. Then, it is easy to find out that f ′(x) =
–r[ln(K (n)

ex )]r–. The following inequalities hold:

–r
[
ln

(
K(n)
ex

)]r–

≤ –r
[
ln

(
Km

x*

)]r–

:= � ()

and

r
[
ln

(
K(n)
ex

)]r–

≤ r lnr–KM :=�. ()

Theorem  Let (H.), (H.) hold. Suppose further that
(H.)  < � <  for � =min{�,�}, where

� = –βM�
 – γM – γMβM� – βM� – νMx* + νMx*

(
μm – 

)
and

� = –γM – γMβM� – γM +μm( –μM) – νMx*
(
 –μm)

.

http://www.advancesindifferenceequations.com/content/2012/1/157
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Then, there exists a unique uniformly asymptotically stable almost periodic solution X =
(x(n),u(n)) of system () which satisfies x* ≤ x(n) ≤ x* and u* ≤ u(n) ≤ u* for all n ∈ Z

+.

Proof Let p(n) = lnx(n). In view of system (), we have

⎧⎨
⎩p(n + ) = p(n) + β(n) lnr(K (n)

x(n) ) – α(n) – γ (n)u(n),

�u(n) = –μ(n)u(n) + ν(n)ep(n).
()

By the result of Theorem , it follows that system () has a bounded solution (p(n),u(n))
satisfying

lnx* ≤ p(n) ≤ lnx* and u* ≤ u(n) ≤ u*, for all n ∈ Z
+.

Hence, |p(n)| ≤ σ and |u(n)| ≤ ρ , where σ =max{| lnx*|, | lnx*|} and ρ =max{u*,u*}.
For (p,u) ∈R

, we define the norm ‖(p,u)‖ = |p|+ |u|. Suppose that X = (p(n),u(n)) and
Y = (q(n), v(n)) are any two solutions of system () defined onZ

+ ×�* ×�*, then ‖X‖ ≤ κ

and ‖Y‖ ≤ κ where κ = σ + ρ and �* = {(p(n),u(n)) ∈ R
 : lnx* ≤ p(n) ≤ lnx*,u* ≤ u(n) ≤

u*, for all n ∈ Z
+}.

Consider the product system of ()

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(n + ) = p(n) + β(n) lnr(K (n)
ep(n) ) – α(n) – γ (n)u(n),

�u(n) = –μ(n)u(n) + ν(n)ep(n),

q(n + ) = q(n) + β(n) lnr(K (n)
eq(n) ) – α(n) – γ (n)v(n),

�v(n) = –μ(n)v(n) + ν(n)eq(n).

()

Construct a Lyapunov function defined on Z
+ × �* × �* as follows:

V (n,X,Y ) =
(
p(n) – q(n)

) + (
u(n) – v(n)

).
It is easy to see that the norm ‖X–Y‖ = |p(n)–q(n)|+ |u(n)–v(n)| and the norm ‖X–Y‖* =
{(p(n) – q(n)) + (u(n) – v(n))} 

 are equivalent, that is, there exist two constants C > 
and C >  such that

C‖X – Y‖ ≤ ‖X – Y‖* ≤ C‖X – Y‖.

Thus

(
C‖X – Y‖) ≤ ‖X – Y‖* ≤ (

C‖X – Y‖)
or

(
C‖X – Y‖) ≤ V (n,X,Y ) ≤ (

C‖X – Y‖).
Let a,b ∈ C(R+,R+) such that a(x) = C

 x and b(x) = C
x. Thus, condition (i) of

Lemma  is satisfied.

http://www.advancesindifferenceequations.com/content/2012/1/157
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Moreover,

∣∣V (n,X,Y ) –V (n, X̃, Ỹ )
∣∣

=
∣∣(p(n) – q(n)

) + (
u(n) – v(n)

) – (
p̃(n) – q̃(n)

) – (
ũ(n) – ṽ(n)

)∣∣
≤ ∣∣(p(n) – q(n)

) – (
p̃(n) – q̃(n)

)∣∣ + ∣∣(u(n) – v(n)
) – (

ũ(n) – ṽ(n)
)∣∣

=
∣∣(p(n) – q(n)

)
+

(
p̃(n) – q̃(n)

)∣∣∣∣(p(n) – q(n)
)
–

(
p̃(n) – q̃(n)

)∣∣
+

∣∣(u(n) – v(n)
)
+

(
ũ(n) – ṽ(n)

)∣∣∣∣(u(n) – v(n)
)
–

(
ũ(n) – ṽ(n)

)∣∣
≤ (∣∣p(n)∣∣ + ∣∣q(n)∣∣ + ∣∣p̃(n)∣∣ + ∣∣q̃(n)∣∣)(∣∣p(n) – p̃(n)

∣∣ + ∣∣q(n) – q̃(n)
∣∣)

+
(∣∣u(n)∣∣ + ∣∣v(n)∣∣ + ∣∣ũ(n)∣∣ + ∣∣ṽ(n)∣∣)(∣∣u(n) – ũ(n)

∣∣ + ∣∣v(n) – ṽ(n)
∣∣)

≤ �
{(∣∣p(n) – p̃(n)

∣∣ + ∣∣u(n) – ũ(n)
∣∣) + (∣∣v(n) – ṽ(n)

∣∣ + ∣∣q(n) – q̃(n)
∣∣)}

= �
{‖X – X̃‖ + ‖Y – Ỹ‖},

where X̃ = (p̃(n), ũ(n)), Ỹ = (q̃(n), ṽ(n)) and � = max{σ ,ρ}. Therefore, condition (ii) of
Lemma  is satisfied.
Finally, we calculate the difference �V (n,X,Y ) along system (). Indeed,

�V()(n,X,Y ) = V (n + ,X,Y ) –V (n,X,Y )

=
(
p(n + ) – q(n + )

) – (
p(n) – q(n)

)
+

(
u(n + ) – v(n + )

) – (
u(n) – v(n)

). ()

In view of system (), we observe that

(
p(n + ) – q(n + )

) = [(
p(n) – q(n)

)
+ β(n) lnr

(
K(n)
ep(n)

)

– β(n) lnr
(
K(n)
eq(n)

)
– γ (n)

(
u(n) – v(n)

)]

or

(
p(n + ) – q(n + )

) = (
p(n) – q(n)

)
+

[
β(n) lnr

(
K(n)
ep(n)

)
– β(n) lnr

(
K(n)
eq(n)

)
– γ (n)

(
u(n) – v(n)

)]

+ 
(
p(n) – q(n)

)[
β(n) lnr

(
K(n)
ep(n)

)
– β(n) lnr

(
K(n)
eq(n)

)

– γ (n)
(
u(n) – v(n)

)]
.

Thus,

(
p(n + ) – q(n + )

) = (
p(n) – q(n)

) + [
β(n) lnr

(
K(n)
ep(n)

)
– β(n) lnr

(
K(n)
eq(n)

)]

+ γ (n)
(
u(n) – v(n)

)
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– γ (n)
(
u(n) – v(n)

)[
β(n) lnr

(
K(n)
ep(n)

)
– β(n) lnr

(
K(n)
eq(n)

)]

+ 
(
p(n) – q(n)

)[
β(n) lnr

(
K(n)
ep(n)

)
– β(n) lnr

(
K(n)
eq(n)

)]

– γ (n)
(
p(n) – q(n)

)(
u(n) – v(n)

)
. ()

Moreover,

(
u(n + ) – v(n + )

) = [(
 –μ(n)

)
u(n) + ν(n)ep(n) –

(
 –μ(n)

)
v(n) – ν(n)eq(n)

]
=

[(
 –μ(n)

)(
u(n) – v(n)

)
+ ν(n)

(
ep(n) – eq(n)

)]
or

(
u(n + ) – v(n + )

) = (
u(n) – v(n)

) +μ(n)
(
μ(n) – 

)(
u(n) – v(n)

)
+ ν(n)

(
ep(n) – eq(n)

)
+ ν(n)

(
 –μ(n)

)(
u(n) – v(n)

)(
ep(n) – eq(n)

)
. ()

Substituting () and () back in (), we obtain

�V (n,X,Y ) =
[
β(n) lnr

(
K(n)
ep(n)

)
– β(n) lnr

(
K(n)
eq(n)

)]

+ γ (n)
(
u(n) – v(n)

)
– γ (n)

(
u(n) – v(n)

)[
β(n) lnr

(
K(n)
ep(n)

)
– β(n) lnr

(
K(n)
eq(n)

)]

+ 
(
p(n) – q(n)

)[
β(n) lnr

(
K(n)
ep(n)

)
– β(n) lnr

(
K(n)
eq(n)

)]

– γ (n)
(
p(n) – q(n)

)(
u(n) – v(n)

)
+μ(n)

(
μ(n) – 

)(
u(n) – v(n)

) + ν(n)
(
ep(n) – eq(n)

)
+ ν(n)

(
 –μ(n)

)(
u(n) – v(n)

)(
ep(n) – eq(n)

)
. ()

By applying the Mean Value Theorem, we have

lnr
(
K(n)
ep(n)

)
– lnr

(
K(n)
eq(n)

)
= –r

[
ln

(
K(n)
eξ (n)

)]r–(
p(n) – q(n)

)
()

and

ep(n) – eq(n) = eη(n)(p(n) – q(n)
)
, ()

where ξ (n), η(n) lie between p(n) and q(n). Substituting () and () back in (), we get

�V (n,X,Y ) = � +� +� +� +� +� +� +�, ()

where

�(n) = β(n)
(
–r

[
ln

(
K(n)
eξ (n)

)]r–)(
p(n) – q(n)

), �(n) = γ (n)
(
u(n) – v(n)

),
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�(n) = –γ (n)
(
u(n) – v(n)

)(
–rβ(n) lnr–

(
K(n)
eξ (n)

))(
p(n) – q(n)

)
,

�(n) = β(n)
(
p(n) – q(n)

)(–r lnr–(K(n)
eξ (n)

))
,

�(n) = –γ (n)
(
p(n) – q(n)

)(
u(n) – v(n)

)
,

�(n) = μ(n)
(
μ(n) – 

)(
u(n) – v(n)

), �(n) = ν(n)eη(n)
(
p(n) – q(n)

),
and

�(n) = ν(n)eη(n)( –μ(n)
)(
u(n) – v(n)

)(
p(n) – q(n)

)
.

By virtue of (H.), () and (), we observe that

�(n)≤ βM�

(
p(n) – q(n)

), ()

�(n) ≤ γM(u(n) – v(n)
), ()

�(n) ≤ γMβM�
∣∣(u(n) – v(n)

)(
p(n) – q(n)

)∣∣
≤ γMβM�

(
p(n) – q(n)

) + γMβM�
(
u(n) – v(n)

), ()

�(n) ≤ βM�
(
p(n) – q(n)

), ()

�(n)≤ γM∣∣(p(n) – q(n)
)(
u(n) – v(n)

)∣∣
≤ γM(

p(n) – q(n)
) + γM(

u(n) – v(n)
), ()

�(n) ≤ μm(
μM – 

)(
u(n) – v(n)

), ()

�(n) ≤ νMx*
(
p(n) – q(n)

), ()

�(n) ≤ ν(n)eη(n)( –μ(n)
)∣∣(u(n) – v(n)

)(
p(n) – q(n)

)∣∣
≤ νMx*

(
 –μm)∣∣(u(n) – v(n)

)(
p(n) – q(n)

)∣∣
≤ νMx*

(
 –μm)(

u(n) – v(n)
) + νMx*

(
 –μm)(

p(n) – q(n)
). ()

Substituting ()-() back in (), we obtain

�V (n,X,Y ) ≤ βM�

(
p(n) – q(n)

)
+ γM(u(n) – v(n)

)
+ γMβM�

(
p(n) – q(n)

) + γMβM�
(
u(n) – v(n)

)
+ βM�

(
p(n) – q(n)

)
+ γM(

p(n) – q(n)
) + γM(

u(n) – v(n)
)

+μm(
μM – 

)(
u(n) – v(n)

)
+ νMx*

(
p(n) – q(n)

)
+ νMx*

(
 –μm)(

u(n) – v(n)
) + νMx*

(
 –μm)(

p(n) – q(n)
)

= –
[
–βM�

 – γM – γMβM�

http://www.advancesindifferenceequations.com/content/2012/1/157
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– βM� – νMx* + νMx*
(
μm – 

)](
p(n) – q(n)

)
–

[
–γM – γMβM� – γM

+μm(
 –μM)

– νMx*
(
 –μm)](

u(n) – v(n)
)

= –�
{(
p(n) – q(n)

) + (
u(n) – v(n)

)}
= –�V (n,X,Y ).

By virtue of the condition that  < � < , assumption (iii) of Lemma  is satisfied. Thus,
we conclude that there exists a unique uniformly asymptotically stable almost periodic
solution X = (p(n),u(n)) of system () which satisfies lnx* ≤ p(n) ≤ lnx* and u* ≤ u(n) ≤
u* for all n ∈ Z

+. It follows that there exists a unique uniformly asymptotically stable almost
periodic solution X = (x(n),u(n)) of system () which satisfies x* ≤ x(n) ≤ x* and u* ≤
u(n) ≤ u* for all n ∈ Z

+. �

Assume the following condition:
(H.) {β(n)}, {K(n)}, {α(n)}, {γ (n)}, {μ(n)} and {ν(n)} are bounded nonnegative

periodic sequences of period ω.

Corollary  Let (H.)-(H.) hold. Then system () has a unique uniformly asymptotically
stable periodic solution of period ω.

5 Some examples
Example  Consider the following system:

⎧⎨
⎩x(n + ) = x(n) exp{(. – . cosn) ln


 ( 

x(n) ) – . – .u(n)},
�u(n) = –(. – . sinπn)u(n) + (.)x(n),

()

where β(n) = .–. cosn, α(n) = ., γ (n) = ., μ(n) = .–. sinπn, ν(n) = .,
K(n) ≡ , r = 

 . By calculation, we find . ≈ x* < x* ≈ ., . ≈ u* < u* ≈
. and � ≈ ., � ≈ .. Therefore, � ≈ .. One can easily check the
validity of conditions (H.)-(H.). Thus, by Theorem  and Theorem , system () is per-
sistent and has a unique uniformly asymptotically stable almost periodic solution.

Example  Consider the following system:

⎧⎪⎪⎨
⎪⎪⎩
x(n + ) = x(n) exp{(. – . sin

√
n) ln( +. sin

√
n

x(n) )

– (. + . sin
√
n) – (. + . sin

√
n)u(n)},

�u(n) = –(. – . cos
√
n)u(n) + (. + . sin

√
n)x(n),

()

where β(n) = . – . sin
√
n, α(n) = . + . sin

√
n, γ (n) = . + . ×

sin
√
n, μ(n) = . – . cos

√
n, ν(n) = . + . sin

√
n, K(n) =  +

. sin
√
n, r = . By calculation, we find . ≈ x* < x* ≈ ., . ≈ u* <

u* ≈ . and � ≈ ., � ≈ .. Therefore, � ≈ .. One can easily
check the validity of conditions (H.)-(H.). Thus, by Theorem  and Theorem , sys-
tem () is persistent and has a unique uniformly asymptotically stable almost periodic
solution.
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Example  Consider the following system:

⎧⎪⎪⎨
⎪⎪⎩
x(n + ) = x(n) exp{(. – . sinn) ln( 

x(n) )

– (. + . sinπn) – (.)u(n)},
�u(n) = –(. – . cosn)u(n) + (.)x(n),

()

where β(n) = . – . sinn, α(n) = . + . sinπn, γ (n) = ., μ(n) = . –
. cosn, ν(n) = ., K(n) ≡ , r ≡ . By calculation, we find . ≈ x* < x* ≈ .,
. ≈ u* < u* ≈ . and � ≈ ., � ≈ .. Therefore, � ≈ .. One can
easily check the validity of conditions (H.)-(H.). Thus, by Theorem  and Corollary ,
system () is persistent and has a unique uniformly asymptotically stable periodic solu-
tion.
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