316 research outputs found

    Improvement of Grazing Lands for Better Livestock Production--A Case Study from Chitradurga District in India

    Get PDF
    Chitradurga is a highly drought prone district in the central dry zone of Karnataka, India, with a normal rainfall of 530 mm per annum. Over 85 per cent of cultivable area is rainfed and the livestock plays a vital role in rural income generation in this district. Improper management and overgrazing have resulted in most of the grazing resources declining to a poor, degraded condition. Regeneration of pasture land was vital in the villages due to three reasons - a) people\u27s livelihood dependency on livestock was considerable b) small ruminants played a vital role for landless farmers and c) lack of adequate fodder was a prime factor for low livestock productivity. To improve the livelihood of livestock farmers, a few interventions were made under World Bank funded National Agricultural Innovation Project through consortium approach in 10 project villages. Frequent interactions were held with the local livestock farmers to discuss about the importance of increasing the fodder resources in the villages to improve the income and to sustain their livelihood. They realized the importance of fodder and came forward to take up cultivation of perennial fodders and also, for the revitalization of grazing lands, locally known as kavals. The primary survey in the villages indicated that about 90 to 96 per cent of the small ruminant holders are dependent on these common property grazing resources for the fodder needs. The High Level Panel of Experts on food security and nutrition, constituted by FAO, has emphasized the importance of extending appropriate technologies and inputs, providing the needed credit and ensuring assured and remunerative marketing opportunities to the smallholders (HLPE, 2013). Such measures are also essential for revitalizing the degraded grasslands in this region

    Sorghum germplasm: diversity and utilization

    Get PDF
    Plant genetic resources can be defi ned as the “Genetic material of plants that is of value as a resource for the present and future generations of people” (IPGRI 1993). The importance of genetic resources was recognized at the inter-governmental platform under the umbrella of Food and Agricultural Organization (FAO) of the United Nations as “common heritage of mankind” that should be made available without restriction (FAO 1983). The genetic resources have evolved as a product of domestication, intensifi cation, diversifi cation and improvement through conscious and unconscious selection by countless generations of farmers, man-guided diversity in the form of landraces and improved cultivars that provide basic and strategic raw materials for crop improvement the world over in present and future generations

    Sub-clinical diabetic cardiomyopathy - assessment by systolic time intervals

    Get PDF
    Left ventricular performance in diabetics wit he at hypertension, ischemic Tie art disease, or clinical evidence of other heart diseases was assessed by systolic time intervals and echo-cardiography. The PEP/ LVET ratio was 3.48% higher in diabetics than in controls. There was good correlation of abnormality of PEP/LVET ratio with duration of diabetes. There was no correlation with age of patient or severity of diabetes. There was good correlation between abnormal PEP/LVET and incidence of retinopathy and nephropathy. This suggests the possibility of the presence of subclinical diabetic cardiomyopathy in these individuals

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate

    Development of a Multiphoton Fluorescence Lifetime Imaging Microscopy (FLIM) system using a Streak Camera

    Full text link
    We report the development and detailed calibration of a multiphoton fluorescence lifetime imaging system (FLIM) using a streak camera. The present system is versatile with high spatial (0.2 micron) and temporal (50 psec) resolution and allows rapid data acquisition and reliable and reproducible lifetime determinations. The system was calibrated with standard fluorescent dyes and the lifetime values obtained were in very good agreement with values reported in literature for these dyes. We also demonstrate the applicability of the system to FLIM studies in cellular specimens including stained pollen grains and fibroblast cells expressing green fluorescent protein. The lifetime values obtained matched well with those reported earlier by other groups for these same specimens. Potential applications of the present system include the measurement of intracellular physiology and Fluorescence Resonance Energy Transfer (FRET) imaging which are discussed in the context of live cell imaging

    N-Terminal Prolactin-Derived Fragments, Vasoinhibins, Are Proapoptoptic and Antiproliferative in the Anterior Pituitary

    Get PDF
    The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal

    A Bayesian method for inferring quantitative information from FRET data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding biological networks requires identifying their elementary protein interactions and establishing the timing and strength of those interactions. Fluorescence microscopy and Förster resonance energy transfer (FRET) have the potential to reveal such information because they allow molecular interactions to be monitored in living cells, but it is unclear how best to analyze FRET data. Existing techniques differ in assumptions, manipulations of data and the quantities they derive. To address this variation, we have developed a versatile Bayesian analysis based on clear assumptions and systematic statistics.</p> <p>Results</p> <p>Our algorithm infers values of the FRET efficiency and dissociation constant, <it>K<sub>d</sub></it>, between a pair of fluorescently tagged proteins. It gives a posterior probability distribution for these parameters, conveying more extensive information than single-value estimates can. The width and shape of the distribution reflects the reliability of the estimate and we used simulated data to determine how measurement noise, data quantity and fluorophore concentrations affect the inference. We are able to show why varying concentrations of donors and acceptors is necessary for estimating <it>K<sub>d</sub></it>. We further demonstrate that the inference improves if additional knowledge is available, for example of the FRET efficiency, which could be obtained from separate fluorescence lifetime measurements.</p> <p>Conclusions</p> <p>We present a general, systematic approach for extracting quantitative information on molecular interactions from FRET data. Our method yields both an estimate of the dissociation constant and the uncertainty associated with that estimate. The information produced by our algorithm can help design optimal experiments and is fundamental for developing mathematical models of biochemical networks.</p

    Quercetin abrogates chemoresistance in melanoma cells by modulating ΔNp73

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The alkylating agent Dacarbazine (DTIC) has been used in the treatment of melanoma for decades, but when used as a monotherapy for cancer only moderate response rates are achieved. Recently, the clinical use of Temozolomide (TMZ) has become the more commonly used analog of DTIC-related oral agents because of its greater bioavailability and ability to cross the blood brain barrier. The response rates achieved by TMZ are also unsatisfactory, so there is great interest in identifying compounds that could be used in combination therapy. We have previously demonstrated that the bioflavonoid quercetin (Qct) promoted a p53-mediated response and sensitized melanoma to DTIC. Here we demonstrate that Qct also sensitizes cells to TMZ and propose a mechanism that involves the modulation of a truncated p53 family member, ΔNp73.</p> <p>Methods</p> <p>DB-1 melanoma (p53 wildtype), and SK Mel 28 (p53 mutant) cell lines were treated with TMZ (400 ÎŒM) for 48 hrs followed by Qct (75 ÎŒM) for 24 hrs. Cell death was determined by Annexin V-FITC staining and immunocytochemical analysis was carried out to determine protein translocation.</p> <p>Results</p> <p>After treatment with TMZ, DB-1 cells demonstrated increased phosphorylation of Ataxia telangiectasia mutated (ATM) and p53. However, the cells were resistant to TMZ-induced apoptosis and the resistance was associated with an increase in nuclear localization of ΔNp73. Qct treatment in combination with TMZ abolished drug insensitivity and caused a more than additive induction of apoptosis compared to either treatment alone. Treatment with Qct, caused redistribution of ΔNp73 into the cytoplasm and nucleus, which has been associated with increased p53 transcriptional activity. Knockdown of ΔNp73 restored PARP cleavage in the TMZ treated cells, confirming its anti-apoptotic role. The response to treatment was predominantly p53 mediated as the p53 mutant SK Mel 28 cells showed no significant enhancement of apoptosis.</p> <p>Conclusion</p> <p>This study demonstrates that Qct can sensitize cells to TMZ and that the mechanisms of sensitization involve modulation of p53 family members.</p

    Sodium-coupled Monocarboxylate Transporters in Normal Tissues and in Cancer

    Get PDF
    SLC5A8 and SLC5A12 are sodium-coupled monocarboxylate transporters (SMCTs), the former being a high-affinity type and the latter a low-affinity type. Both transport a variety of monocarboxylates in a Na+-coupled manner. They are expressed in the gastrointestinal tract, kidney, thyroid, brain, and retina. SLC5A8 is localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to neurons and the retinal pigment epithelium. The physiologic functions of SLC5A8 include absorption of short-chain fatty acids in the colon and small intestine, reabsorption of lactate and pyruvate in the kidney, and cellular uptake of lactate and ketone bodies in neurons. It also transports the B-complex vitamin nicotinate. SLC5A12 is also localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to astrocytes and MĂŒller cells. SLC5A8 also functions as a tumor suppressor; its expression is silenced in tumors of colon, thyroid, stomach, kidney, and brain. The tumor-suppressive function is related to its ability to mediate concentrative uptake of butyrate, propionate, and pyruvate, all of which are inhibitors of histone deacetylases. SLC5A8 can also transport a variety of pharmacologically relevant monocarboxylates, including salicylates, benzoate, and Îł-hydroxybutyrate. Non-steroidal anti-inflammatory drugs such as ibuprofen, ketoprofen, and fenoprofen, also interact with SLC5A8. These drugs are not transportable substrates for SLC5A8, but instead function as blockers of the transporter. Relatively less is known on the role of SLC5A12 in drug transport

    The Refinement of Genetic Predictors of Multiple Sclerosis

    Get PDF
    Medical Research Council [GRANT NUMBER G0801976], a research fellowship FISM-Fondazione Italiana Sclerosi Multipla-Cod.: [2010/B/5 to GD] and an MS Society of Great Britain and Northern Ireland Clinical Research Fellowship [GRANT NUMBER 940/10 to RD]
    • 

    corecore