223 research outputs found
Transcriptome-Wide Detection of Differentially Expressed Coding and Non-Coding Transcripts and Their Clinical Significance in Prostate Cancer
Prostate cancer is a clinically and biologically heterogeneous disease. Deregulation of splice variants has been shown to contribute significantly to this complexity. High-throughput technologies such as oligonucleotide microarrays allow for the detection of transcripts that play a role in disease progression in a transcriptome-wide level. In this study, we use a publicly available dataset of normal adjacent, primary tumor, and metastatic prostate cancer samples (GSE21034) to detect differentially expressed coding and non-coding transcripts between these disease states. To achieve this, we focus on transcript-specific probe selection regions, that is, those probe sets that correspond unambiguously to a single transcript. Based on this, we are able to pinpoint at the transcript-specific level transcripts that are differentially expressed throughout prostate cancer progression. We confirm previously reported cases and find novel transcripts for which no prior implication in prostate cancer progression has been made. Furthermore, we show that transcript-specific differential expression has unique prognostic potential and provides a clinically significant source of biomarker signatures for prostate cancer risk stratification. The results presented here serve as a catalog of differentially expressed transcript-specific markers throughout prostate cancer progression that can be used as basis for further development and translation into the clinic
Genomic āDark Matterā in Prostate Cancer: Exploring the Clinical Utility of ncRNA as Biomarkers
Prostate cancer is the most diagnosed cancer among men in the United States. While the majority of patients who undergo surgery (prostatectomy) will essentially be cured, about 30ā40% men remain at risk for disease progression and recurrence. Currently, patients are deemed at risk by evaluation of clinical factors, but these do not resolve whether adjuvant therapy will significantly attenuate or delay disease progression for a patient at risk. Numerous efforts using mRNA-based biomarkers have been described for this purpose, but none have successfully reached widespread clinical practice in helping to make an adjuvant therapy decision. Here, we assess the utility of non-coding RNAs as biomarkers for prostate cancer recurrence based on high-resolution oligonucleotide microarray analysis of surgical tissue specimens from normal adjacent prostate, primary tumors, and metastases. We identify differentially expressed non-coding RNAs that distinguish between the different prostate tissue types and show that these non-coding RNAs can predict clinical outcomes in primary tumors. Together, these results suggest that non-coding RNAs are emerging from the ādark matterā of the genome as a new source of biomarkers for characterizing disease recurrence and progression. While this study shows that non-coding RNA biomarkers can be highly informative, future studies will be needed to further characterize the specific roles of these non-coding RNA biomarkers in the development of aggressive disease
Genomic Classifier Augments the Role of Pathological Features in Identifying Optimal Candidates for Adjuvant Radiation Therapy in Patients With Prostate Cancer: Development and Internal Validation of a Multivariable Prognostic Model.
Purpose Despite documented oncologic benefit, use of postoperative adjuvant radiotherapy (aRT) in patients with prostate cancer is still limited in the United States. We aimed to develop and internally validate a risk-stratification tool incorporating the Decipher score, along with routinely available clinicopathologic features, to identify patients who would benefit the most from aRT. Patient and Methods Our cohort included 512 patients with prostate cancer treated with radical prostatectomy at one of four US academic centers between 1990 and 2010. All patients had ā„ pT3a disease, positive surgical margins, and/or pathologic lymph node invasion. Multivariable Cox regression analysis tested the relationship between available predictors (including Decipher score) and clinical recurrence (CR), which were then used to develop a novel risk-stratification tool. Our study adhered to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for development of prognostic models. Results Overall, 21.9% of patients received aRT. Median follow-up in censored patients was 8.3 years. The 10-year CR rate was 4.9% vs. 17.4% in patients treated with aRT versus initial observation ( P \u3c .001). Pathologic T3b/T4 stage, Gleason score 8-10, lymph node invasion, and Decipher score \u3e 0.6 were independent predictors of CR (all P \u3c .01). The cumulative number of risk factors was 0, 1, 2, and 3 to 4 in 46.5%, 28.9%, 17.2%, and 7.4% of patients, respectively. aRT was associated with decreased CR rate in patients with two or more risk factors (10-year CR rate 10.1% in aRT v 42.1% in initial observation; P = .012), but not in those with fewer than two risk factors ( P = .18). Conclusion Using the new model to indicate aRT might reduce overtreatment, decrease unnecessary adverse effects, and reduce risk of CR in the subset of patients (approximately 25% of all patients with aggressive pathologic disease in our cohort) who benefit from this therapy
Evaluation of a genomic classifier in radical prostatectomy patients with lymph node metastasis.
OBJECTIVE: To evaluate the performance of the Decipher test in predicting lymph node invasion (LNI) on radical prostatectomy (RP) specimens.
METHODS: We identified 1,987 consecutive patients with RP who received the Decipher test between February and August 2015 (contemporary cohort). In the contemporary cohort, only the Decipher score from RP specimens was available for analysis. In addition, we identified a consecutive cohort of patients treated with RP between 2006 and 2012 at the University of California, San Diego, with LNI upon pathologic examination (retrospective cohort). The retrospective cohort yielded seven, 22, and 18 tissue specimens from prostate biopsy, RP, and lymph nodes (LNs) for individual patients, respectively. Univariable and multivariable logistic regression analyses were used to evaluate the performance of Decipher in the contemporary cohort with LNI as the endpoint. In the retrospective cohort, concordance of risk groups was assessed using validated cut-points for low (0.60) Decipher scores.
RESULTS: In the contemporary cohort, 51 (2.6%) patients had LNI. Decipher had an odds ratio of 1.73 (95% confidence interval, 1.46-2.05) and 1.42 (95% confidence interval, 1.19-1.7) per 10% increase in score on univariable and multivariable (adjusting for pathologic Gleason score, extraprostatic extension, and seminal vesicle invasion), respectively. No significant difference in the clinical and pathologic characteristics between the LN positive patients of contemporary and retrospective cohorts was observed (all P\u3e0.05). Accordingly, among LN-positive patients in the contemporary cohort and retrospective cohort, 80% and 77% had Decipher high risk scores (P=1). In the retrospective cohort, prostate biopsy cores with the highest Gleason grade and percentage of tumor involvement had 86% Decipher risk concordance with both RP and LN specimens.
CONCLUSION: Decipher scores were highly concordant between pre- and post-surgical specimens. Further, Decipher scores from RP tissue were predictive of LNI at RP. If validated in a larger cohort of prostate biopsy specimens for prediction of adverse pathology at RP, Decipher may be useful for improved pre-operative staging
Recommended from our members
FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes.
Mutations in the transcription factor FOXA1 define a unique subset of prostate cancers but the functional consequences of these mutations and whether they confer gain or loss of function is unknown1-9. Here, by annotating theĀ landscape of FOXA1 mutations from 3,086 human prostate cancers, we define two hotspots in the forkhead domain: Wing2 (around 50% of all mutations) and the highly conserved DNA-contact residue R219 (around 5% of all mutations). Wing2 mutations are detected in adenocarcinomas at all stages, whereas R219 mutations are enriched in metastatic tumours with neuroendocrine histology. Interrogation of the biological properties of wild-type FOXA1 and fourteen FOXA1 mutants reveals gain of function in mouse prostate organoid proliferation assays. Twelve of these mutants, as well as wild-type FOXA1, promoted an exaggerated pro-luminal differentiation program, whereas two different R219 mutants blocked luminal differentiation and activated a mesenchymal and neuroendocrine transcriptional program. Assay for transposase-accessible chromatin using sequencing (ATAC-seq) of wild-type FOXA1 and representative Wing2 and R219 mutants revealed marked, mutant-specific changes in open chromatin at thousands of genomic loci and exposed sites of FOXA1 binding and associated increases in gene expression. Of note, ATAC-seq peaks in cells expressing R219 mutants lacked the canonical core FOXA1-binding motifs (GTAAAC/T) but were enriched for a related, non-canonical motif (GTAAAG/A), which was preferentially activated by R219-mutant FOXA1 in reporter assays. Thus, FOXA1 mutations alter its pioneering function and perturb normal luminal epithelial differentiation programs, providing further support for the role of lineage plasticity in cancer progression
Impact of the SPOP Mutant Subtype on the Interpretation of Clinical Parameters in Prostate Cancer.
Purpose: Molecular characterization of prostate cancer, including The Cancer Genome Atlas, has revealed distinct subtypes with underlying genomic alterations. One of these core subtypes, SPOP (speckle-type POZ protein) mutant prostate cancer, has previously only been identifiable via DNA sequencing, which has made the impact on prognosis and routinely used risk stratification parameters unclear.
Methods: We have developed a novel gene expression signature, classifier (Subclass Predictor Based on Transcriptional Data), and decision tree to predict the SPOP mutant subclass from RNA gene expression data and classify common prostate cancer molecular subtypes. We then validated and further interrogated the association of prostate cancer molecular subtypes with pathologic and clinical outcomes in retrospective and prospective cohorts of 8,158 patients.
Results: The subclass predictor based on transcriptional data model showed high sensitivity and specificity in multiple cohorts across both RNA sequencing and microarray gene expression platforms. We predicted approximately 8% to 9% of cases to be SPOP mutant from both retrospective and prospective cohorts. We found that the SPOP mutant subclass was associated with lower frequency of positive margins, extraprostatic extension, and seminal vesicle invasion at prostatectomy; however, SPOP mutant cancers were associated with higher pretreatment serum prostate-specific antigen (PSA). The association between SPOP mutant status and higher PSA level was validated in three independent cohorts. Despite high pretreatment PSA, the SPOP mutant subtype was associated with a favorable prognosis with improved metastasis-free survival, particularly in patients with high-risk preoperative PSA levels.
Conclusion: Using a novel gene expression model and a decision tree algorithm to define prostate cancer molecular subclasses, we found that the SPOP mutant subclass is associated with higher preoperative PSA, less adverse pathologic features, and favorable prognosis. These findings suggest a paradigm in which the interpretation of common risk stratification parameters, particularly PSA, may be influenced by the underlying molecular subtype of prostate cancer
TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup.
Purpose: Current clinical parameters do not stratify indolent from aggressive prostate cancer. Aggressive prostate cancer, defined by the progression from localized disease to metastasis, is responsible for the majority of prostate cancerāassociated mortality. Recent gene expression profiling has proven successful in predicting the outcome of prostate cancer patients; however, they have yet to provide targeted therapy approaches that could inhibit a patient\u27s progression to metastatic disease. Experimental Design: We have interrogated a total of seven primary prostate cancer cohorts (n = 1,900), two metastatic castration-resistant prostate cancer datasets (n = 293), and one prospective cohort (n = 1,385) to assess the impact of TOP2A and EZH2 expression on prostate cancer cellular program and patient outcomes. We also performed IHC staining for TOP2A and EZH2 in a cohort of primary prostate cancer patients (n = 89) with known outcome. Finally, we explored the therapeutic potential of a combination therapy targeting both TOP2A and EZH2 using novel prostate cancerāderived murine cell lines. Results: We demonstrate by genome-wide analysis of independent primary and metastatic prostate cancer datasets that concurrent TOP2A and EZH2 mRNA and protein upregulation selected for a subgroup of primary and metastatic patients with more aggressive disease and notable overlap of genes involved in mitotic regulation. Importantly, TOP2A and EZH2 in prostate cancer cells act as key driving oncogenes, a fact highlighted by sensitivity to combination-targeted therapy. Conclusions: Overall, our data support further assessment of TOP2A and EZH2 as biomarkers for early identification of patients with increased metastatic potential that may benefit from adjuvant or neoadjuvant targeted therapy approaches. Ā©2017 AACR
- ā¦