9 research outputs found

    Developmental plasticity of human foetal femur-derived cells in pellet culture: self assembly of an osteoid shell around a cartilaginous core

    Get PDF
    This study has examined the osteogenic and chondrogenic differentiation of human foetal femur-derived cells in 3-dimensional pellet cultures. After culture for 21-28 days in osteogenic media, the pellets acquired a unique configuration that consisted of an outer fibrous layer, an osteoid-like shell surrounding a cellular and cartilaginous region. This configuration is typical to the cross section of the foetal femurs at the same age and was not observed in pellets derived from adult human bone marrow stromal cells. Time course study showed that after 7-14 days, the cells of the inner cellular region were viable, proliferated rapidly, and were immuno-positive for c-myc, as well as for bone sialoprotein and type I collagen. After 21-28 days, the cells accumulated at the inner edge of the osteoid shell. The direction of osteoid formation thus differed from that of periosteal bone formation. Following micro-dissection of the human foetal femurs into epiphyses, bone cylinder and hypertrophic cartilage, epiphyseal chondrocytes and osteoblasts both gave rise to osteoid-shell forming cells. These studies demonstrate the developmental plasticity of human foetal skeletal and epiphyseal chondrocytes and suggest that the microenvironment modulates lineage commitment and matrix formation. Furthermore, this ex vivo model offers a new approach to delineate human bone development as well as a model with potential application for evaluation of therapeutic compounds for bone formation

    Epigenetic regulation during fetal femur development: DNA methylation matters

    Get PDF
    Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs), adult chondrocytes and STRO-1+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2) and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5-)-methyltransferase 1 (DNMT1) in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development, informing and opening new possibilities in development of strategies for bone repair/tissue engineering.<br/

    Skin tissue regeneration for burn injury

    No full text

    Advanced therapies in wound management: cell and tissue based therapies, physical and bio-physical therapies smart and IT based technologies

    No full text
    corecore