567 research outputs found

    Dynamical Heterogeneities and Cooperative Motion in Smectic Liquid Crystals

    Full text link
    Using simulations of hard rods in smectic-A states, we find non-gaussian diffusion and heterogeneous dynamics due to the equilibrium periodic smectic density profiles, which give rise to permanent barriers for layer-to-layer diffusion. This relaxation behavior is surprisingly similar to that of non-equilibrium supercooled liquids, although there the particles are trapped in transient (instead of permanent) cages. Interestingly, we also find stringlike clusters of up to 10 inter-layer rods exhibiting dynamic cooperativity in this equilibrium state.Comment: 10 pages, 4 figure

    Brambilla et al. Reply to a Comment by J. Reinhardt et al. on "Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition"

    Full text link
    G. Brambilla et al. Reply to a Comment by J. Reinhardt et al. questioning the existence of equilibrium dynamics above the critical volume fraction of colloidal hard spheres predicted by mode coupling theory.Comment: To appear in Phys. Rev. Lett. Reply to a Comment by J. Reinhardt et al. (see arXiv:1010.2891), which questions the existence of equilibrium dynamics above the critical volume fraction of glassy colloidal hard spheres predicted by mode coupling theor

    Time Resolved Correlation measurements of temporally heterogeneous dynamics

    Full text link
    Time Resolved Correlation (TRC) is a recently introduced light scattering technique that allows to detect and quantify dynamic heterogeneities. The technique is based on the analysis of the temporal evolution of the speckle pattern generated by the light scattered by a sample, which is quantified by c_I(t,τ)c\_I(t,\tau), the degree of correlation between speckle images recorded at time tt and t+τt+\tau. Heterogeneous dynamics results in significant fluctuations of c_I(t,τ)c\_I(t,\tau) with time tt. We describe how to optimize TRC measurements and how to detect and avoid possible artifacts. The statistical properties of the fluctuations of c_Ic\_I are analyzed by studying their variance, probability distribution function, and time autocorrelation function. We show that these quantities are affected by a noise contribution due to the finite number NN of detected speckles. We propose and demonstrate a method to correct for the noise contribution, based on a NN\to \infty extrapolation scheme. Examples from both homogeneous and heterogeneous dynamics are provided. Connections with recent numerical and analytical works on heterogeneous glassy dynamics are briefly discussed.Comment: 19 pages, 15 figures. Submitted to PR

    Aging in Dense Colloids as Diffusion in the Logarithm of Time

    Full text link
    The far-from-equilibrium dynamics of glassy systems share important phenomenological traits. A transition is generally observed from a time-homogeneous dynamical regime to an aging regime where physical changes occur intermittently and, on average, at a decreasing rate. It has been suggested that a global change of the independent time variable to its logarithm may render the aging dynamics homogeneous: for colloids, this entails diffusion but on a logarithmic time scale. Our novel analysis of experimental colloid data confirms that the mean square displacement grows linearly in time at low densities and shows that it grows linearly in the logarithm of time at high densities. Correspondingly, pairs of particles initially in close contact survive as pairs with a probability which decays exponentially in either time or its logarithm. The form of the Probability Density Function of the displacements shows that long-ranged spatial correlations are very long-lived in dense colloids. A phenomenological stochastic model is then introduced which relies on the growth and collapse of strongly correlated clusters ("dynamic heterogeneity"), and which reproduces the full spectrum of observed colloidal behaviors depending on the form assumed for the probability that a cluster collapses during a Monte Carlo update. In the limit where large clusters dominate, the collapse rate is ~1/t, implying a homogeneous, log-Poissonian process that qualitatively reproduces the experimental results for dense colloids. Finally an analytical toy-model is discussed to elucidate the strong dependence of the simulation results on the integrability (or lack thereof) of the cluster collapse probability function.Comment: 6 pages, extensively revised, final version; for related work, see http://www.physics.emory.edu/faculty/boettcher/ or http://www.fysik.sdu.dk/staff/staff-vip/pas-personal.htm

    Laboratory Tests of Low Density Astrophysical Equations of State

    Full text link
    Clustering in low density nuclear matter has been investigated using the NIMROD multi-detector at Texas A&M University. Thermal coalescence modes were employed to extract densities, ρ\rho, and temperatures, TT, for evolving systems formed in collisions of 47 AA MeV 40^{40}Ar + 112^{112}Sn,124^{124}Sn and 64^{64}Zn + 112^{112}Sn, 124^{124}Sn. The yields of dd, tt, 3^{3}He, and 4^{4}He have been determined at ρ\rho = 0.002 to 0.032 nucleons/fm3^{3} and TT= 5 to 10 MeV. The experimentally derived equilibrium constants for α\alpha particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.Comment: 5 pages, 3 figure

    Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: A systematic review and meta-analysis

    Get PDF
    BACKGROUNDThe coexistence of sarcopenia and obesity is referred to as sarcopenic obesity (SO) and it has been hypothesized that the two components of SO may synergistically increase their negative effects. However, many uncertainties still surround this condition especially with regard to its potential negative effects on health outcomes.AIMTo conduct a systematic review to determine the prevalence of sarcopenia among adults with overweight and obesity and to investigate whether SO was associated with a higher risk of type 2 diabetes (T2D).METHODSThis study was conducted in adherence with the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. Literature searches, study selection, methodology development and quality appraisal were performed independently by two authors and the data were collated by means of meta-analysis and narrative synthesis.RESULTSOf the 606 articles retrieved, 11 studies that comprised a total of 60118 adults with overweight and obesity of both genders met the inclusion criteria and were reviewed, revealing two main findings. First, the overall prevalence of sarcopenia is 43% in females and 42% in males who are with overweight and obesity. Secondly, the presence of SO increases the risk of T2D by 38% with respect to those without SO (OR = 1.38, 95% CI: 1.27-1.50).CONCLUSIONA high prevalence of sarcopenia has been found among adults with overweight and obesity regardless of their gender and this condition seems to be associated with a higher risk of T2D. Clinician should be aware of this scenario in their clinical practice for the better management of both obesity and T2D

    Critical Behavior in Light Nuclear Systems: Experimental Aspects

    Get PDF
    An extensive experimental survey of the features of the disassembly of a small quasi-projectile system with AA \sim 36, produced in the reactions of 47 MeV/nucleon 40^{40}Ar + 27^{27}Al, 48^{48}Ti and 58^{58}Ni, has been carried out. Nuclei in the excitation energy range of 1-9 MeV/u have been investigated employing a new method to reconstruct the quasi-projectile source. At an excitation energy \sim 5.6 MeV/nucleon many observables indicate the presence of maximal fluctuations in the de-excitation processes. The fragment topological structure shows that the rank sorted fragments obey Zipf's law at the point of largest fluctuations providing another indication of a liquid gas phase transition. The caloric curve for this system shows a monotonic increase of temperature with excitation energy and no apparent plateau. The temperature at the point of maximal fluctuations is 8.3±0.58.3 \pm 0.5 MeV. Taking this temperature as the critical temperature and employing the caloric curve information we have extracted the critical exponents β\beta, γ\gamma and σ\sigma from the data. Their values are also consistent with the values of the universality class of the liquid gas phase transition. Taken together, this body of evidence strongly suggests a phase change in an equilibrated mesoscopic system at, or extremely close to, the critical point.Comment: Physical Review C, in press; some discussions about the validity of excitation energy in peripheral collisions have been added; 24 pages and 32 figures; longer abstract in the preprin

    Tracing the Evolution of Temperature in Near Fermi Energy Heavy Ion Collisions

    Get PDF
    The kinetic energy variation of emitted light clusters has been employed as a clock to explore the time evolution of the temperature for thermalizing composite systems produced in the reactions of 26A, 35A and 47A MeV 64^{64}Zn with 58^{58}Ni, 92^{92}Mo and 197^{197}Au. For each system investigated, the double isotope ratio temperature curve exhibits a high maximum apparent temperature, in the range of 10-25 MeV, at high ejectile velocity. These maximum values increase with increasing projectile energy and decrease with increasing target mass. The time at which the maximum in the temperature curve is reached ranges from 80 to 130 fm/c after contact. For each different target, the subsequent cooling curves for all three projectile energies are quite similar. Temperatures comparable to those of limiting temperature systematics are reached 30 to 40 fm/c after the times corresponding to the maxima, at a time when AMD-V transport model calculations predict entry into the final evaporative or fragmentation stage of de-excitation of the hot composite systems. Evidence for the establishment of thermal and chemical equilibrium is discussed.Comment: 9 pages, 5 figure

    Properties of the Initial Participant Matter Interaction Zone in Near Fermi-Energy Heavy Ion Collisions

    Get PDF
    The sizes, temperatures and free neutron to proton ratios of the initial interaction zones produced in the collisions of 40 MeV/nucleon 40^{40}Ar + 112^{112}Sn and 55 MeV/nucleon27^{27}Al + 124^{124}Sn are derived using total detected neutron plus charged particle multiplicity as a measure of the impact parameter range and number of participant nucleons. The size of the initial interaction zone, determined from a coalescence model analysis, increases significantly with decreasing impact parameter. The temperatures and free neutron to proton ratios in the interaction zones are relatively similar for different impact parameter ranges and evolve in a similar fashion.Comment: 7 pages, 8 figure

    Experimental Determination of In-Medium Cluster Binding Energies and Mott Points in Nuclear Matter

    Get PDF
    In medium binding energies and Mott points for dd, tt, 3^3He and α\alpha clusters in low density nuclear matter have been determined at specific combinations of temperature and density in low density nuclear matter produced in collisions of 47AA MeV 40^{40}Ar and 64^{64}Zn projectiles with 112^{112}Sn and 124^{124}Sn target nuclei. The experimentally derived values of the in medium modified binding energies are in good agreement with recent theoretical predictions based upon the implementation of Pauli blocking effects in a quantum statistical approach.Comment: 5 pages, 3 figure
    corecore