2 research outputs found

    Response of primiparous and multiparous buffaloes to yeast culture supplementation during early and mid-lactation

    Get PDF
    Strains of live Saccharomyces cerevisiae yeast have exhibited probiotic effects in ruminants. This study investigated the effects of the dietary yeast supplement, S. cerevisiae (Yea-Sacc1026), on primiparous (PP) and multiparous (MP) Egyptian buffaloes in early to mid-lactation. Lactating buffaloes were fed either a basal total mixed ration (TMR, control; 4 PP and 8 MP) or the basal TMR plus 10 g Yea-Sacc1026 per buffalo cow per day (yeast; 4 PP and 8 MP). The feeds were given from 15 days prepartum to 180 days postpartum. Feed intake, body weight, and milk yields (MY) were recorded, and milk and blood samples were collected for analyses. Feces were collected from days 45 to 47 during early lactation and from days 90 to 92 during mid-lactation to determine apparent digestibility of dry matter (DM), organic matter (OM), crude protein (CP) and crude fiber (CF). Energy corrected milk yield (ECM), feed conversion, and energy and nitrogen conversion efficiency were calculated. Yeast treated MP buffaloes consumed more DM (P ≤ 0.041) and CP than the untreated control group. Apparent digestibility of DM and OM were significantly greater at mid-lactation for treated versus control group (P = 0.001). Crude fiber digestibility was greater in MP than in PP buffaloes (P = 0.049), and yeast supplemented MP cows had a greater CF digestibility than control MP buffaloes at mid-lactation (P = 0.010). Total blood lipids decreased after yeast supplementation (P = 0.029). Milk yields, ECM, fat and protein yields increased for yeast treated MP buffaloes (P ≤ 0.039). The study concluded that the response to yeast supplementation in buffalo cows is parity dependent. Multiparous buffaloes respond to yeast supplementation with an increased DM intake and CF digestibility without significant weight gains, allowing a greater ECM yield with less fat mobilization. Supplementing buffaloes with yeast culture may increase milk production in early lactation and results in a more persistent milk production during mid-lactation. Feed conversion and energy and nitrogen conversion efficiency may be increased with the use of yeast supplementation in Egyptian buffaloes

    Quinoa in Egypt - plant density effects on seed yield and nutritional quality in marginal regions

    Get PDF
    Grain quinoa is a halophyte crop with potentially increasing cultivation area. Yet, no standards exist for optimum plant density in arid-regions. The aim of this work was to evaluate the effect of planting density on Peruvian valley type of Chenopodium quinoa Willd. cv. CICA from the standpoint of yield and seed quality in marginal area. Two Field experiments were conducted over two consecutive seasons viz., 2015-2016 in a marginal land at El-Fayoum oasis, Egypt with one quinoa cultivar and two planting densities namely, 56.000 plant ha-1(Low) and 167.000 plant ha(High). A complete randomized block design with six replicates was used. Seed yield increased by 34.7% with increase of plant density from 56.000 plant ha-1 to 167.000 plant ha-1. The increase of plant density significantly decreased weight of 1000-seeds and weight of hectoliter. Protein and ash concentrations in seeds increased at low planting density, whereas carbohydrate concentration decreased. However, there were no significant differences between the two planting densities on the seed concentration of the crude fiber or total fat. Regarding effects of plant density on mineral content in quinoa seeds, the calcium and magnesium contents significantly increased at low density compared with high planting density. Meanwhile, no significant effects of plant density on phosphorus, potassium, iron and zinc content in quinoa seeds were detected. Thus, the present study concludes that the plant density that gives higher seed yield is associated with significant reduction in seed quality in terms of protein content. On the other hand, low plant density significantly increased weight of 1000-seeds and hectoliter, which is reflected on the grain size. The latter is considered as a very important parameter for quinoa global market preference.Fil: Eisa, Sayed S.. Faculty Of Agriculture, Ain Shams University, Cairo; EgiptoFil: Abd El Samad, Emad H.. National Research Centre, Egypt; EgiptoFil: Hussin, Sayed A.. Faculty Of Agriculture, Ain Shams University, Cairo; EgiptoFil: Ali, Essam A.. Desert Research Center, Egypt; EgiptoFil: Ebrahim, Mohamed. Faculty Of Agriculture, Ain Shams University, Cairo; EgiptoFil: González, Juan Antonio. Fundación Miguel Lillo; ArgentinaFil: Ordano, Mariano Andrés. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Erazzú, Luis Ernesto. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: El Bordeny, Nasr E.. Faculty Of Agriculture, Ain Shams University, Cairo; EgiptoFil: Abdel-Ati, Ahmed A.. Desert Research Center, Egypt; Egipt
    corecore