32 research outputs found

    Rumex dentatus L. phenolics ameliorate hyperglycemia by modulating hepatic key enzymes of carbohydrate metabolism, oxidative stress and PPARγ in diabetic rats

    Full text link
    Rumex dentatus L. is a flowering plant with promising therapeutic effects. This study investigated the antioxidant efficacy of phenolic compounds isolated from R. dentatus L. in vitro and by conducting density function theory (DFT) studies to explore the mechanisms of action. The antioxidant, anti-inflammatory and antidiabetic effects of polyphenols-rich R. dentatus extract (RDE) were investigated in type 2 diabetic rats. Phytochemical investigation of the aerial parts of R. dentatus resulted in the isolation of one new and seven known compounds isolated for the first time from this species. All isolated phenolics showed in vitro radical scavenging activity. The antioxidant activity of the compounds could be oriented by the hydrogen atom transfer and sequential proton loss electron transfer mechanisms in gas and water phases, respectively. In diabetic rats, RDE attenuated hyperglycemia, insulin resistance and liver injury and improved carbohydrate metabolism. RDE suppressed oxidative stress and inflammation and upregulated PPARγ. In silico molecular docking analysis revealed the binding affinity of the isolated compounds toward PPARγ. In conclusion, the computational calculations were correlated with the in vitro antioxidant activity of R. dentatus derived phenolics. R. dentatus attenuated hyperglycemia, liver injury, inflammation and oxidative stress, improved carbohydrate metabolism and upregulated PPARγ in diabetic ratsThis work has DGI Project no. CTQ2015-63997-C2, a generous allocation of computing time at the Centro de Computación Científica of the UAM is also acknowledge

    Euphorbia

    Full text link

    Impact of different magnetic materials added to silver–magnetite nanoparticles on the structural, magnetic and antimicrobial properties

    No full text
    Different magnetic materials of spinel copper and cobalt nanoferrites added to silver–magnetite nanoparticles were fabricated by a facile, low cost, and rapid auto-combustion method to form a nanocomposite. X-ray diffraction patterns and atomic force microscopy were studied for the investigated samples and confirmed their nanosize range. Adding cobalt nanoferrite to silver–magnetite (CoAF) yielded a more pronounced effect in the magnetic measurements than adding copper nanoferrite (CuAF). This result was attributed to the much higher coercivity Hc and saturation magnetization Ms (5.7-fold and 2.8-fold, respectively) of CoAF than CuAF; accordingly, the CoAF nanocomposite can be applied to a permanent magnet. Next, the operating frequencies of the nanocomposites were calculated from the magnetic measurements. The CoAF and CuAF nanocomposites were applicable in the microwave super-high-frequency C-band and the microwave super-high-frequency S-band, respectively. Both nanocomposites were ineffective against the tested fungi but showed strong antimicrobial activities against the tested Gram-positive and Gram-negative bacteria. Thus, CoAF and CuAF nanocomposites are potential antibacterial nanomaterials for biomedical applications
    corecore