4 research outputs found

    Pas de titre fourni

    No full text
    Les convertisseurs à base de Si atteignent leurs limites. Face à ces besoins, le GaN, avec sa vitesse de saturation des électrons et le champ électrique de claquage élevés est candidat idéal pour réaliser des redresseurs, surtout s’il est épitaxié sur substrat à bas cout. Ce travail est dédié au développement des diodes Schottky sur AlGaN/GaN. Une couche de SiNx en faible traction a été obtenue. Un contact ohmique de Ti/Al avec une gravure partiel a donné une Rc de 2.8 Ω.mm avec une résistance Rsh de 480 Ω/□. Des diodes Schottky avec les étapes issues de ces études ont été fabriqué. La diode recuite à 400 °C avec 30 nm de profondeur de gravure a montré une hauteur de barrière de 0,82 eV et un facteur d'idéalité de 1,49. La diode a présenté une très faible densité de courant de fuite de 8.45x10-8 A.mm-1 à -400 V avec une tension de claquage entre 480 V et 750 V.Si-based devices for power conversion applications are reaching their limits. Wide band gap GaN is particularly interesting due to the high electron saturation velocity and high breakdown electric field, especially when epitaxied on low cost substrates such as Si. This work was dedicated to the development and fabrication of the Schottky diode on AlGaN/GaN on Si. SiNx passivation in very low tensile strain is used. Ti (70 nm)/Al (180 nm) partially recessed ohmic contacts annealed at 800 ºC exhibited a 2.8 Ω.mm Rc with a sheet resistance of 480 Ω/sq. Schottky diodes with the previously cited passivation and ohmic contact were fabricated with a fully recessed Schottky contact annealed at 400 ºC. A Schottky barrier height of 0.82 eV and an ideality factor of 1.49 were obtained. These diodes also exhibited a very low leakage current density (up to -400 V) of 8.45x10-8 A.mm-1. The breakdown voltage varied between 480 V and 750 V

    Surface State of GaN after Rapid-Thermal-Annealing Using AlN Cap-Layer

    No full text
    International audienceGraphical abstract: Surface state of a crack-free AlN cap-layer reactive sputtered on GaN and annealed at high temperature showing a smooth, pit-free surface. - Highlights: • We deposit a crystalline AlN layer by reactive magnetron sputtering on GaN. • We show the effect of deposition parameters of AlN by reactive magnetron sputtering on the quality of the grown layer. • We demonstrate the efficiency of double cap-layer for GaN protection during high temperature thermal treatments. • We show an efficient selective etch of AlN without damaging GaN surface. - Abstract: Critical issues need to be overcome to produce high performance Schottky diodes on gallium nitride (GaN). To activate dopant, high temperature thermal treatments are required but damage GaN surface where hexagonal pits appear and prevent any device processing. In this paper, we investigated the efficiency of cap-layers on GaN during thermal treatments to avoid degradation. Aluminum nitride (AlN) and silicon oxide (SiOx) were grown on GaN by direct current reactive magnetron sputtering and plasma-enhanced chemical vapor deposition, respectively. AlN growth parameters were studied to understand their effect on the grown layers and their protection efficiency. Focused ion beam was used to measure AlN layer thickness. Crystalline quality and exact composition were verified using X-ray diffraction and energy dispersive X-ray spectroscopy. Two types of rapid thermal annealing at high temperatures were investigated. Surface roughness and pits density were evaluated using atomic force microscopy and scanning electron microscopy. Cap-layers wet etching was processed in H3PO4 at 120 °C for AlN and in HF (10%) for SiOx. This work reveals effective protection of GaN during thermal treatments at temperatures as high as 1150 °C. Low surface roughness was obtained. Furthermore, no hexagonal pit was observed on the surface

    Impact of rapid thermal annealing on Mg-implanted GaN with a SiO x /AlN cap-layer

    No full text
    International audienceLocal p-type doping in GaN is a key issue for device development but it remains a challenge to be achieved. In this work, we studied the activation of Mg implanted in the GaN. Multi-energy implantations were performed to achieve a “box-like” profile. SIMS measurements showed unexpected deep Mg profile due to defect-assisted channeling in the GaN. In addition, a high-density defect region induced by the implantation was evidenced by TEM characterization. To protect the GaN surface prior to high temperature annealing, an AlN cap-layer was deposited by reactive sputtering followed by SiOx deposition leading to a double cap-layer. Afterwards, the capped samples were RTA-annealed at high temperatures for several minutes under nitrogen. Two types of annealing processes were applied: a monocycle and a multicycle annealing. After annealing, the double cap-layer was etched using chemical solutions. AFM characterizations, after annealing and cap-layer etching, demonstrated that a GaN surface with similar roughness to as-grown samples and pit-free can be achieved after both monocycle and multicycle annealing steps. However, an AlGaN layer at the AlN/GaN interface is observed by ToF-SIMS and remained after the etching of the AlN layer. Finally, Schottky diodes were processed on the unimplanted and annealed samples, evidencing a double barrier, while P/N junction diodes are still being processed on the implanted and annealed samples
    corecore