4 research outputs found

    Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization

    Get PDF
    International audienceThe coagulation of combined sewer overflow (CSO) was investigated by jar-testing with two commercial coagulants, a ferric chloride solution (CLARFER) and a polyaluminium chloride (WAC HB). CSO samples were collected as a function of time during various wet-weather events from the inlet of Boudonville retention basin, Nancy, France. Jar-tests showed that an efficient turbidity removal can be achieved with both coagulants, though lower optimum dosages and higher re-stabilization concentrations were obtained with the aluminum-based coagulant. Optimum turbidity removal also yielded effective heavy metal elimination. However, the evolution with coagulant dosage of Cu, Zn, Pb, Cr, soluble and suspended solids contents followed various patterns. The removal behaviors can be explained by a selective aggregation of heavy metal carriers present in CSO and a specific interaction between hydrolyzed coagulant species and soluble metals. Stoichiometric relationships were established between optimal coagulant concentration, range of optimal dosing, and CSO conductivity, thus providing useful guidelines to adjust the coagulant demand during the course of CSO events

    Incorporation of hydrophobized mineral particles in activated sludge flocs: a way to assess ballasting efficiency

    Get PDF
    International audienceThe role of mineral surface hydrophobicity on attachment to activated sludge flocs was investigated. Fluorite and quartz particles of similar granulometry were hydrophobized by adsorbing sodium oleate and docecylamine chloride, respectively. Mineral hydrophobicity was assessed by flotation expriments. The attachment of particles to microbial flocs was determined by optical microscopy. The results indicate that hydrophobized particles are always better incorporated within activated sludge flocs than non-coated particles. A comparison with Aquatal particles used as sludge ballast reveals that hydrophobized minerals are associated with microbial flocs to the same extent

    Trace element carriers in combined sewer during dry and wet weather: an electron microscope investigation

    Get PDF
    International audienceThe nature of trace element carriers contained in sewage and combined sewer overflow (CSO) was investigated by TEM-EDX-Electron diffraction and SEM-EDX. During dry weather, chalcophile elements were found to accumulate in sewer sediments as early diagenetic sulfide phases. The sulfurization of some metal alloys was also evidenced. Other heavy metal carriers detected in sewage include metal alloys, some iron oxihydroxide phases and neoformed phosphate minerals such as anapaite. During rain events, the detailed characterization of individual mineral species allowed to differentiate the contributions from various specific sources. Metal plating particles, barite from automobile brake, or rare earth oxides from catalytic exhaust pipes, originate from road runoff, whereas PbSn alloys and lead carbonates are attributed to zinc-works from roofs and paint from building siding. Soil contribution can be traced by the presence of clay minerals, iron oxihydroxides, zircons and rare earth phosphates. However, the most abundant heavy metal carriers in CSO samples were the sulfide particles eroded from sewer sediments. The evolution of relative abundances of trace element carriers during a single storm event, suggests that the pollution due to the “first flush” effect principally results from the sewer stock of sulfides and previously deposited metal alloys, rather than from urban surface runoff
    corecore