5 research outputs found

    Automatic detection of weld defects based on hough transform

    Get PDF
    Weld defect detection is an important application in the field of Non-Destructive Testing (NDT). These defects are mainly due to manufacturing errors or welding processes. In this context, image processing especially segmentation is proposed to detect and localize efficiently different types of defects. It is a challenging task since radiographic images have deficient contrast, poor quality and uneven illumination caused by the inspection techniques. The usual segmentation technique uses a region of interest ROI from the original image. In this article, a robust and automatic method is presented to detect linear defect from the original image without selection of ROI based on canny detector and a modified `Hough Transform' technique. This task can be subdivided into the following steps: firstly, preprocessing step with Gaussian filter and contrast stretching; secondly, segmentation technique is used to isolate weld region from background and non-weld using Adaptative Thresholding and to extract edges; thirdly, detection, location of linear defect and limiting the welding area by Hough Transform. The experimental results show that our proposed method gives good performance for industrial radiographic images

    Feature Clustering based MIM for a New Feature Extraction Method

    Get PDF
    In this paper, a new unsupervised Feature Extraction appoach is presented, which is based on feature clustering algorithm. Applying a divisive clustering algorithm, the method search for a compression of the information contained in the original set of features. It investigates the use of Mutual Information Maximization (MIM) to find appropriate transformation of clusterde features. Experiments on UCI datasets show that the proposed method often outperforms conventional unsupervised methods PCA and ICA from the point of view of classification accuracy

    Feature selection and extraction for classification problems

    No full text
    Les progrès scientifiques réalisés ces dernières années ont produit des bases de données de plus en plus grandes et complexes. Ceci amène certains classificateurs à générer des règles de classification basées sur des attributs non pertinents, et dégrader ainsi la qualité de classification et la capacité de généralisation. Dans ce contexte, nous proposons une nouvelle méthode pour l’extraction d’attributs afin d’améliorer la qualité de la classification. Notre méthode consiste à effectuer une classification non supervisée des attributs afin de retrouver les groupements d’attributs similaires. Une nouvelle mesure de similarité à base d’analyse de tendance est alors conçue afin de retrouver les attributs similaires dans leur comportement. En effet, notre méthode cherche à réduire l’information redondante tout en identifiant les tendances similaires dans les vecteurs attributs tout au long de la base de données. Suite à la formation des clusters, une transformation linéaire sera appliquée sur les attributs dans chaque groupement pour obtenir un représentant unique. Afin de retrouver un centre optimal, nous proposons de maximiser l’Information Mutuelle (IM) comme mesure de dépendance entre les groupements d’attributs et leur centre recherché. Des expériences réalisées sur des bases de données réelles et artificielles montrent que notre méthode atteint de bonnes performances de classification en comparaison avec d’autres méthodes d’extraction d’attributs. Notre méthode a été également appliquée sur le diagnostic industriel d’un procédé chimique complexe Tennessee Eastman Process (TEP).Scientific advances in recent years have produced databases increasingly large and complex. This brings some classifiers to generate classification rules based on irrelevant features, and thus degrade the quality of classification and generalization ability. In this context, we propose a new method for extracting features to improve the quality of classification. Our method performs a clustering of features to find groups of similar features. A new similarity measure based on trend analysis is then designed to find similarity between features in their behavior. Indeed, our method aims to reduce redundant information while identifying similar trends in features vectors throughout the database. Following the construction of clusters, a linear transformation is applied on each group to obtain a single representative. To find an optimal center, we propose to maximize the Mutual Information (IM) as a measure of dependency between groups of features and the desired center. Experiments on real and synthetic data show that our method achieved good classification performance in comparison with other methods of extracting features. Our method has also been applied to the industrial diagnosis of a complex chemical process Tennessee Eastman Process (TEP)
    corecore