3,108 research outputs found

    Hard Two-Body Photodisintegration of He-3

    Get PDF
    We have measured cross sections for the gamma He-3 -\u3e pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90 degrees. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron

    Near-threshold neutral pion electroproduction at high momentum transfers and generalized form factors

    Get PDF
    We report the measurement of near-threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range Q(2) from 2 to 4.5 GeV2 and W from 1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles E0+ and S0+ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors G(1)(pi 0p) (Q(2)) and G(2)(pi 0p) (Q(2)). The data are compared to these generalized form factors and the results for G(1)(pi 0p) (Q(2)) are found to be in good agreement with the LCSR predictions, but the level of agreement with G(2)(pi 0p) (Q(2)) is poor. DOI: 10.1103/PhysRevC.87.04520

    Exclusive πᵒ Electroproduction at W \u3e 2 GeV with CLAS

    Get PDF
    Exclusive neutral-pion electroproduction (ep → e\u27p\u27π0 was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4σ/dtdQ2dxBdΦπ and structure functions σT+ ϵσL, σTT, and σLT as functions of t were obtained over a wide range of Q2 and xB. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions

    Measurements of ep → e\u27π+n at 1.6 \u3c W \u3c2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    Get PDF
    Differential cross sections of the exclusive process ep -\u3e e \u27π+n were measured with good precision in the range of the photon virtuality Q2 = 1.8-4.5 GeV2 and the invariant mass range of the π+n final state W = 1.6-2.0 GeV using the Continuous Electron Beam Accelerator Facility Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the n π+center-of-mass system. More than 37 000 cross-section points were measured. The contributions of the isospin I = ½ resonances N(1675) 5/2-, N(1680) 5/2+, and N(1710) 1/2+ were extracted at different values of Q2 using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-t dispersion relations, were employed in the analysis. We observe significant strength of the N(1675)5/2- in the A(1/2) amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the N(1680)5/2+ we observe a slow changeover from the dominance of the A3/2 amplitude at the real photon point (Q2 = 0) to a Q2 where A1/2 begins to dominate. The scalar amplitude S 1/2 drops rapidly with Q2consistent with quark model prediction. For the N(1710)½+ resonance our analysis shows significant strength for the A½ amplitude at Q2 \u3c 2.5 GeV2

    Measurement of the Q(2) Dependence of the Deuteron Spin Structure Function g(1) and Its Moments at Low Q(2) with CLAS

    Get PDF
    We measured the g1 spin structure function of the deuteron at low Q2, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W ≈ 1.9  GeV. The generalized Gerasimov-Drell-Hearn sum, the moment Γd1 and the spin polarizability γ0d are precisely determined down to a minimum Q2 of 0.02  GeV2 for the first time, about 2.5 times lower than that of previous data. We compare them to several χPT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the χPT domain. We measured the g1 spin structure function of the deuteron at low Q2, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W ≈1.9  GeV. The generalized Gerasimov-Drell-Hearn sum, the moment Γ_{1}^{d} and the spin polarizability γ_{0}^{d} are precisely determined down to a minimum Q2 of 0.02  GeV2 for the first time, about 2.5 times lower than that of previous data. We compare them to several χPT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the χPT domain
    • …
    corecore