63 research outputs found
Iranian Public Is Not Monolithic: Iranians Divide Over Their Government But Unite on Forgoing Nuclear Weapons
Findings from an early 2008 World Public Opinion (WPO) survey in Iran1 suggest that the Iranian public is far from monolithic in how it views important political and social issues that will likely play prominent roles affecting the outcome of the upcoming 2009 national elections. These findings also have considerable relevance for U.S. policy toward Iran during a period in which the U.S. government is exploring the possibility and usefulness of greater openness in its dealings with Iran
Mechanism of endothelial progenitor cell recruitment into neo-vessels in adjacent non-tumor tissues in hepatocellular carcinoma
Abstract Background We investigated the distribution and clinical significance of mobilized endothelial progenitor cells (EPCs) in hepatocellular carcinoma (HCC). We found that many more EPCs were recruited to nonmalignant liver tissue (especially into adjacent non-tumor tissues (AT)) than to tumor vessels. These results suggest that the mechanism underlying the recruitment of EPCs into microvessels in AT merits further investigation Methods Angiogenic factors were detected in three tissue microarrays comprising normal liver, paired tumor tissue (TT) and AT from 105 patients (who had undergone hepatectomy for HCC) using immunohistochemistry. Also, the number of EPCs (positive for Sca-1, Flk-1 and c-Kit) in the blood and liver of cirrhotic mice were determined by flow cytometry and immunohistochemistry. The distribution of these labeled EPCs in tumor and non-tumor tissues was then studied. Results The results from the tissue microarrays showed that the expression levels of VEGF-A, bFGF, TGF-β, MCP-1, TSP-1, MMP-9, TIMP-2, and endostatin were significantly higher in AT than in either normal liver or TT (p Conclusions Both liver cirrhosis and HCC led to increased expression of pro-angiogenic factors, which resulted in the recruitment of EPCs into AT. Also, EPCs were mobilized, recruited and homed to cirrhotic liver. The unique pathology of HCC coupled with liver cirrhosis may, therefore, be associated with the distribution and function of EPCs.</p
Particular distribution and expression pattern of endoglin (CD105) in the liver of patients with hepatocellular carcinoma
<p>Abstract</p> <p>Background</p> <p>Endoglin (CD105) has been considered a prognostic marker for hepatocellular carcinoma (HCC), and widely used as an appropriate targeting for antiangenesis therapy in some cancers. Our aim was to evaluate the distribution and expression of CD105 in the liver of patients with HCC, and to discuss whether CD105 may be used as an appropriate targeting for antiangenesis therapy in HCC.</p> <p>Methods</p> <p>Three parts of liver tissues from each of 64 patients with HCC were collected: tumor tissues (TT), adjacent non-tumor (AT) liver tissues within 2 cm, and tumor free tissues (TF) 5 cm far from the tumor edge. Liver samples from 8 patients without liver diseases served as healthy controls (HC). The distribution and expression of CD105 in tissues were evaluated by immunohistochemistry, Western blotting analysis, and real-time PCR. HIF-1alpha and VEGF<sub>165 </sub>protein levels in tissues were analyzed by Immunohistochemistry and Western blotting analysis or ELISA.</p> <p>Results</p> <p>CD105 was positively stained mostly in a subset of microvessels 'endothelial sprouts' in TT of all patients while CD105 showed diffuse positive staining, predominantly on hepatic sinus endothelial cells in the surrounding of draining veins in TF and AT. The mean score of MVD-CD105 (mean ± SD/0.74 mm<sup>2</sup>) was 19.00 ± 9.08 in HC, 153.12 ± 53.26 in TF, 191.12 ± 59.17 in AT, and 85.43 ± 44.71 in TT, respectively. Using a paired <it>t </it>test, the expression of CD105 in AT and TF was higher than in TT at protein (MVD, <it>p </it>= 0.012 and <it>p </it>= 0.007, respectively) and mRNA levels (<it>p </it>< 0.001 and <it>p </it>= 0.009, respectively). Moreover, distribution and expression of CD105 protein were consistent with those of HIF-1alpha and VEGF<sub>165 </sub>protein in liver of patients with HCC. The level of <it>CD105 </it>mRNA correlated with VEGF<sub>165 </sub>level in TF (r = 0.790, <it>p </it>= 0.002), AT (r = 0.723, <it>p </it>< 0.001), and TT (r = 0.473, <it>p </it>= 0.048), respectively.</p> <p>Conclusion</p> <p>It is demonstrated that CD105 was not only present in neovessels in tumor tissues, but also more abundant in hepatic sinus endothelium in non-tumor tissues with cirrhosis. Therefore, CD105 may not be an appropriate targeting for antiangenesis therapy in HCC, especially with cirrhosis.</p
Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma
Pancreatic ductal adenocarcinoma has a median survival of less than 6 months from diagnosis. This is due to the difficulty in early diagnosis, the aggressive biological behaviour of the tumour and a lack of effective therapies for advanced disease. Mammalian heparanase is a heparan-sulphate proteoglycan cleaving enzyme. It helps to degrade the extracellular matrix and basement membranes and is involved in angiogenesis. Degradation of extracellular matrix and basement membranes as well as angiogenesis are key conditions for tumour cell spreading. Therefore, we have analysed the expression of heparanase in human pancreatic cancer tissue and cell lines. Heparanase is expressed in cell lines derived from primary tumours as well as from metastatic sites. By immunohistochemical analysis, it is preferentially expressed at the invading edge of a tumour at both metastatic and primary tumour sites. There is a trend towards heparanase expression in metastasising tumours as compared to locally growing tumours. Postoperative survival correlates inversely with heparanase expression of the tumour reflected by a median survival of 34 and 17 month for heparanase negative and positive tumours, respectively. Our results suggest, that heparanase promotes cancer cell invasion in pancreatic carcinoma and could be used as a prognostic indicator for postoperative survival of patients
Correlation between CD105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma
BACKGROUND: Angiogenesis is one of the mechanisms most critical to the postoperative recurrence and metastasis of hepatocellular carcinoma (HCC). Thus, finding the molecular markers associated with angiogenesis may help identify patients at increased risk for recurrence and metastasis of HCC. This study was designed to investigate whether CD105 or CD34 could serve as a valid prognostic marker in patients with HCC by determining if there is a correlation between CD105 or CD34 expression and postoperative recurrence or metastasis. METHODS: Immunohistochemical staining for the CD105, CD34 and vascular endothelial growth factor (VEGF) antibodies was performed in 113 HCC tissue specimens containing paracarcinomatous tissue and in 14 normal liver tissue specimens. The quantitation of microvessels identified by anti-CD105 and anti-CD34 monoclonal antibodies and the semiquantitation of VEGF expression identified by anti-VEGF monoclonal antibody were analyzed in conjunction with the clinicopathological characteristics of the HCC and any available follow-up information about the patients from whom the specimens were obtained. RESULTS: CD105 was not expressed in the vascular endothelial cells of any normal liver tissue or paracarcinomatous liver tissue but was expressed in the vascular endothelial cells of all HCC tissue. In contrast, CD34 was expressed in the vascular endothelial cells of normal liver tissue, paracarcinomatous tissue, and HCC tissue in the following proportions of specimens: 86.7%, 93.8%, and 100%, respectively. The microvascular densities (MVDs) of HCC determined by using an anti-CD105 mAb (CD105-MVD) and an anti-CD34 mAb (CD34-MVD), were 71.7 ± 8.3 (SD) and 106.3 ± 10.4 (SD), respectively. There was a significant correlation between CD105-MVD and CD34-MVD (r = 0.248, P = 0.021). Although CD34-MVD was significantly correlated with VEGF expression (r = 0.243, P = 0.024), CD105-MVD was more closely correlated (r = 0.300, P= 0.005). The correlation between microscopic venous invasion and CD105-MVD, but not CD34-MVD, was also statistically significant (r = 0.254, P = 0.018). Univariate analysis showed that CD105-MVD was significantly correlated with the 2-year overall survival rate (P = 0.014); CD34-MVD was not (P = 0.601). Multivariate analysis confirmed that CD105-MVD was an independent prognostic factor and that CD34-MVD was not. CONCLUSION: The anti-CD105 mAb is an ideal instrument to quantify new microvessels in HCC as compared with anti-CD34 mAb. CD105-MVD as compared with CD34-MVD is relevant a significant and independent prognostic indicator for recurrence and metastasis in HCC patients
Irsogladine upregulates expressions of connexin32 and connexin26 in the rat liver
A gap junction is the channel for cell-to-cell communication and plays an important role in the maintenance of tissue homeostasis, control of cell growth and differentiation, and prevention of experimental hepatocarcino-genesis. Irsogladine, an antiulcer drug, augments gap junctional intercellular communication in gastric mucosa, but the effect of irsogladine on the liver remains uncertain. In this study the effects of irsogladine on the liver were investigated from the viewpoints of gap junctional protein connexin (Cx)32 and Cx26 in rats. Twelve rats were divided into a control group (n = 6) and the irsogladine group (n = 6) in which irsogladine (20 mg/kg per day) was administered orally for 3 days before sample collection, and the two groups were compared in regard to liver enzymes (serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH)), serum- and tissue-calcium concentrations, immunohistochemical expressions of Cx32 and Cx26, and RT-PCR analysis. In immunohistochemistry, analyzed using an image processor for analytical pathology (IPAP), the number of Cx32-positive spots was higher and the area of Cx26-positive spots were larger in the irsogladine group than those in the control group (P = 0.036 and P = 0.00032, respectively). In RT-PCR analysis, the mRNA of Cx32 or Cx26 in the irsogladine group showed a tendency to be higher than in the control group, but not significantly (Cx32, P = 0.70; Cx26, P = 0.07). Another 30 rats were used for measurements of cyclic-adenosine monophosphate (c-AMP) of the liver, c-AMP concentration was increased 1 h after the administration of irsogladine, which partially explained how the Cxs were upregulated. These findings may suggest that irsogladine upregulates Cx32 and Cx26 expressions in the liver of rats. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved
- …